Skip to main content

Microalgal Bioremediation: A Clean and Sustainable Approach for Controlling Environmental Pollution

  • Chapter
  • First Online:
Innovations in Environmental Biotechnology

Abstract

Environmental pollution is a major global threat today, with widespread consequences. Industrial effluents, flue gases, automobile emissions, solid waste, agricultural runoff, amongst others, have loaded air, water, and soil with a plethora of undesirable substances harmful for humans and their surroundings. Common pollutants, such as exhaust gases, heavy metals, pesticides, pharmaceuticals, and many emerging organic and inorganic chemicals, are causing multitude of chronic illnesses. With growing population and rapid industrialization, it is becoming increasingly important to develop efficient, cheap, sustainable, and scalable processes to mitigate these life-threatening pollutants.

Conventional physiochemical methods used for the treatment of industrial, municipal, and agricultural wastewaters and emissions are effective, but they suffer serious drawbacks, such as sludge generation, membrane fouling, and high energy and reagent requirements. This has attracted the use of biological resources in development of sustainable and eco-friendly remediation processes. Microalgae particularly have emerged as a potential microorganism in bioremediation owing to their ability to adsorb, accumulate, and degrade many common pollutants using different mechanisms. Concomitant sequestration of carbon dioxide, generation of oxygen, and accumulation of lipids and carbohydrates with growth are however the real advantages of using microalgae in bioremediation. Moreover, simple and cheap nutritional and cultivation requirements of microalgae make it most suitable bioresource for mitigating pollution. The development of microalgae-based remediation processes is therefore an ambitious goal in environmental biotechnology. This chapter reviews important concepts, developments, challenges, and future prospects of microalgal bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    Article  CAS  Google Scholar 

  • Baglieri A, Sidella S, Barone V, Fragala F, Silkina A, Negre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmusquadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res 23:18165–18174

    Article  CAS  Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernández JE et al (2018) Biosorption: an interplay between marine algae and potentially toxic elements-a review. Mar Drugs 16(2):65

    Article  PubMed Central  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Ebele AJ, Abdallah MA, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16

    Article  Google Scholar 

  • El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40(3):301–308

    Article  Google Scholar 

  • Fukuda S, Iwamoto K, Atsumi M et al (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127:79–89

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Yamamoto R, Iwamoto K et al (2018) Cellular accumulation of cesium in the unicellular red alga Galdieriasulphuraria under mixotrophic conditions. J Appl Phycol 30:3057–3061

    Article  CAS  Google Scholar 

  • Girijan S, Kumar M (2020) Microbial degradation of pharmaceuticals and personal care products from wastewater. In: Shah M (ed) Microbial bioremediation & biodegradation. Springer, Singapore

    Google Scholar 

  • Hassaan MA, Nemr AE (2020) Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res 46(3):207–220

    Article  Google Scholar 

  • Hultberg M, Bodin H, Ardal E et al (2016) Effect of microalgal treatments on pesticides in water. Environ Technol 37(7):893–898

    Article  CAS  PubMed  Google Scholar 

  • Hussein MH, Abdullah AM, Din NIBE et al (2017) Biosorption Potential of the Microchlorophyte Chlorella vulgaris for some pesticides. J Fertil Pesticid 8(1):5

    Google Scholar 

  • Iwamoto K, Shiraiwa Y (2017) Accumulation of cesium by aquatic plants and algae. In: Gupta D, Walther C (eds) Impact of cesium on plants and the environment. Springer, Cham

    Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  • Kumar S, Kaushik G, Dar MA et al (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28(2):190–208

    Article  CAS  Google Scholar 

  • Lai W (2017) Pesticide use and health outcomes: evidence from agricultural water pollution in China. J Environ Econ Manag 86:93–120

    Article  Google Scholar 

  • Lee KY, Lee SH, Lee JE et al (2019) Biosorption of radioactive cesium from contaminated water by microalgae Haematococcuspluvialis and Chlorella vulgaris. J Environ Manag 233:83–88

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322

    Article  CAS  PubMed  Google Scholar 

  • Matamoros V, Uggetti E, García J, Bayona JM (2016) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 15(301):197–205

    Article  CAS  Google Scholar 

  • Mendonça HV, Ometto JPHB, Otenio MH et al (2018) Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: comparison between batch and continuous operation. Sci Total Environ 633:1–11

    Article  PubMed  CAS  Google Scholar 

  • Morehead MS, Scarbrough C (2018) Emergence of global antibiotic resistance. Prim Care 45(3):467–484

    Article  PubMed  Google Scholar 

  • Nagi M, He M, Li D et al (2020) Utilization of tannery wastewater for biofuel production: new insights on microalgae growth and biomass production. Sci Rep 10:1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AC, Barata A, Batista AP et al (2019) Scenedesmusobliquus in poultry wastewater bioremediation. Environ Technol 40(28):3735–3744

    Google Scholar 

  • Pena ACC, Bertoldi CF, Fontoura JT et al (2019) Consortium of microalgae for tannery effluent treatment. Braz Arch Biol Technol 62:e19170518

    Article  CAS  Google Scholar 

  • Pradhan D, Sukla LB (2019) Removal of radon from radionuclide-contaminated water using microalgae. In: Sukla L, Subudhi E, Pradhan D (eds) The role of microalgae in wastewater treatment. Springer, Singapore

    Google Scholar 

  • Prakash D, Gabani P, Chandel AK et al (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6(4):349–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salih F (2011) Microalgae tolerance to high concentrations of carbon dioxide: a review. J Environ Prot 2(5):648–654

    Article  CAS  Google Scholar 

  • Saranya D, Shanthakumar S (2019) Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential. J Environ Manag 241:167–178

    Article  CAS  Google Scholar 

  • Shah A, Shah M (2020) Characterisation and bioremediation of wastewater: a review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundw Sustain Dev 11:100383

    Article  Google Scholar 

  • Shah MP, Rodriguez-Couto S, Sevinç Åžengör S (2020) Emerging technologies in environmental bioremediation. Elsevier, Amsterdam

    Google Scholar 

  • Singh J, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29

    Article  Google Scholar 

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179

    Article  CAS  Google Scholar 

  • Singh S, Pradhan D, Sukla LB (2019) Microalgae: gizmo to heavy metals removal. In: Sukla L, Subudhi E, Pradhan D (eds) The role of microalgae in wastewater treatment. Springer, Singapore

    Google Scholar 

  • Snyder SA (2008) Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Sci Eng 3:65–69

    Article  CAS  Google Scholar 

  • Sutherland DL, Ralph PJ (2019) Microalgal bioremediation of emerging contaminants - opportunities and challenges. Water Res 164:114921

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK et al (2012) Heavy metal toxicity and the environment. Experientia Suppl 101:133–164

    Article  Google Scholar 

  • Tossavainen M, Lahti K, Edelmann M et al (2019) Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols. J Appl Phycol 31:1753–1763

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (2001) Marine liter: trash that kills. Swedish Environmental Protection Agency, UNEP GPA Coordination Office, Stockholm, The Hague. Accessed 11 Oct 2020

    Google Scholar 

  • Viegas C, Gonçalves M, Soares L et al (2016) Bioremediation of agro-industrial effluents using chlorella microalgae. In: Camarinha-Matos LM, Falcão AJ, Vafaei N, Najdi S (eds) Technological innovation for cyber-physical systems. 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2016, Costa de Caparica, Portugal, April 11-13, 2016, vol 470. Springer, Cham

    Google Scholar 

  • Wang Y, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82:429–448

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2018) Ambient (outdoor) air pollution. WHO, Geneva. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 11 Oct 2020

    Google Scholar 

  • World Health Organization (2019) Drinking water. WHO, Geneva. https://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 12 Oct 2020

    Google Scholar 

  • World Wildlife Fund (2018) Wildlife in a warming world: the effects of climate change on biodiversity. World Wildlife Fund, Gland. https://www.worldwildlife.org/publications/wildlife-in-a-warming-world-the-effects-of-climate-change-on-biodiversity. Accessed 11 Oct 2020

    Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Yuvraj, Padmanabhan P (2017) Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors. 3 Biotech 7:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuvraj, Vidyarthi AS, Singh J (2016) Enhancement of Chlorella vulgaris cell density: shake flask and bench-top photobioreactor studies to identify and control limiting factors. Korean J Chem Eng 33:2396–2405

    Article  CAS  Google Scholar 

  • Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuvraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuvraj (2022). Microalgal Bioremediation: A Clean and Sustainable Approach for Controlling Environmental Pollution. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Innovations in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4445-0_13

Download citation

Publish with us

Policies and ethics