Skip to main content

Cross Talk Between Aluminum and Genetic Susceptibility and Epigenetic Modification in Alzheimer’s Disease

  • Chapter
  • First Online:
Book cover Neurotoxicity of Aluminum

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1091))

Abstract

This chapter primarily focuses on two key aspects related to aluminum neurotoxicity and its mechanism in Alzheimer’s disease (AD), which are genetic susceptibility and epigenetic modification. The toxicity of aluminum has been confirmed from plant experiments, animal experiments, in vitro experiments, and epidemiological studies. However, the mechanisms underlying this phenomenon have largely remained elusive. Furthermore, there are more and more genetic factors that have been found to be strongly implicated for causing or increasing the risk of AD development and have been proved to be associated with the neurotoxicity of Al and play a significant role in the initiation and progression of AD. Epigenetics provide a bridge between genes and environment to improve our understanding on the etiology of AD. Al can modify the epigenetic status by DNA methylation, histone modifications, and noncoding RNAs and might thereby contribute to the pathophysiology of AD. However, very little is known about exact epigenetic patterns in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akinola OB, Biliaminu SA, Adediran RA, Adeniye KA, Abdulquadir FC (2015) Characterization of prefrontal cortex microstructure and antioxidant status in a rat model of neurodegeneration induced by aluminium chloride and multiple low-dose streptozotocin. Metab Brain Dis 30:1531

    Article  CAS  PubMed  Google Scholar 

  2. Anderson KW, Chen J, Wang M, Mast N, Pikuleva IA, Turko IV (2015) Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLoS One 10:e0126592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aubry S, Shin W, Crary JF, Lefort R, Qureshi YH, Lefebvre C, Califano A, Shelanski ML (2015) Assembly and interrogation of Alzheimer’s disease genetic networks reveal novel regulators of progression. PLoS One 10:e0120352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bagyinszky E, Youn YC, An SSA, Kim SY (1994) The genetics of Alzheimer’s disease. Clin Interv Aging 3:217–240

    Google Scholar 

  5. Bednarek PT, Orłowska R, Niedziela A (2017) A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biol 17:79

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bharathi S, Sathyanarayana NM, Rao TS, Dhanunjaya NM, Ravid R, Rao KS (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52:275–292

    Article  CAS  PubMed  Google Scholar 

  7. Bird A (1992) The essentials of DNA methylation. Cell 70:5–8

    Article  CAS  PubMed  Google Scholar 

  8. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  9. Bollati V, Galimberti D, Pergoli L, Valle ED, Barretta F, Cortini F, Scarpini E, Bertazzi PA, Baccarelli A (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Bondy SC (2016) Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology 52:222–229

    Article  CAS  PubMed  Google Scholar 

  12. Bowman GD, Poirier MG (2016) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295

    Article  CAS  Google Scholar 

  13. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cacabelos R, Torrellas C (2015) Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci 16:30483–30543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai Z, Zhao B, Ratka A (2011) Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromol Med 13:223–250

    Article  CAS  Google Scholar 

  16. Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castorina A, Tiralongo A, Giunta S, Carnazza ML, Scapagnini G, D’Agata V (2010) Early effects of aluminum chloride on beta-secretase mRNA expression in a neuronal model of ß-amyloid toxicity. Cell Biol Toxicol 26:367–377

    Article  CAS  PubMed  Google Scholar 

  18. Chen SM, Fan CC, Chiue MS, Chi C, Chen JH, Hseu RS (2013) Hemodynamic and neuropathological analysis in rats with aluminum trichloride-induced Alzheimer’s disease. PLoS One 8:e82561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    Article  CAS  PubMed  Google Scholar 

  20. Colomina MT, Peris-Sampedro F (2017) Aluminum and Alzheimer’s disease. Adv Neurobiol 18:183

    Article  PubMed  Google Scholar 

  21. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180:511–513

    Article  CAS  PubMed  Google Scholar 

  22. Di PC, Reverte I, Colomina MT, Domingo JL, Gomez M (2014) Chronic exposure to aluminum and melatonin through the diet: neurobehavioral effects in a transgenic mouse model of Alzheimer disease. Food Chem Toxicol 69:320–329

    Article  CAS  Google Scholar 

  23. Drago D, Cavaliere A, Mascetra N, Ciavardelli D, DI IC, Zatta P, Sensi SL (2008b) Aluminum modulates effects of beta amyloid (1-42) on neuronal calcium homeostasis and mitochondria functioning and is altered in a triple transgenic mouse model of Alzheimer’s disease. Rejuvenation Res 11:861–871

    Article  CAS  PubMed  Google Scholar 

  24. Elinder CG, Ahrengart L, Lidums V, Pettersson E, Sj Gren B (1991) Evidence of aluminium accumulation in aluminium welders. Br J Ind Med 48:735–738

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Erazi H, Sansar W, Ahboucha S, Gamrani H (2010) Aluminum affects glial system and behavior of rats. C R Biol 333:23

    Article  CAS  PubMed  Google Scholar 

  26. Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667

    Article  PubMed  PubMed Central  Google Scholar 

  27. Exley C (2003) A biogeochemical cycle for aluminium? J Inorg Biochem 97:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 15:1807–1816

    Article  CAS  PubMed  Google Scholar 

  29. Exley C (2014a) What is the risk of aluminium as a neurotoxin? Expert Rev Neurother 14:589–591

    Article  CAS  PubMed  Google Scholar 

  30. Exley C (2014b) Why industry propaganda and political interference cannot disguise the inevitable role played by human exposure to aluminum in neurodegenerative diseases, including Alzheimer’s disease. Front Neurol 5:212

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ezaki B, Higashi A, Nanba N, Nishiuchi T (2016) An S-adenosyl Methionine Synthetase (SAMS) gene from Andropogon virginicus L. confers aluminum stress tolerance and facilitates epigenetic gene regulation in Arabidopsis thaliana. Front Plant Sci 7:1627

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferreira PC, Piai KA, Takayanagui AM, Seguramu OZ SI (2008) Aluminum as a risk factor for Alzheimer’s disease. Rev Lat Am Enfermagem 16:151

    Article  PubMed  Google Scholar 

  33. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55:187–196

    Article  CAS  PubMed  Google Scholar 

  34. Frisardi V, Solfrizzi V, Capurso C, Kehoe PG, Imbimbo BP, Santamato A, Dellegrazie F, Seripa D, Pilotto A, Capurso A (2010) Aluminum in the diet and Alzheimer’s disease: from current epidemiology to possible disease-modifying treatment. J Alzheimers Dis Jad 20:17–30

    Article  CAS  PubMed  Google Scholar 

  35. Fulgenzi A, Vietti D, Ferrero ME (2014) Aluminium involvement in neurotoxicity. Biomed Res Int 2014:758323

    PubMed  PubMed Central  Google Scholar 

  36. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204

    Article  CAS  PubMed  Google Scholar 

  37. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174

    Article  PubMed  Google Scholar 

  38. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635

    Article  CAS  PubMed  Google Scholar 

  39. Graff J, Kim D, Dobbin MM, Tsai LH (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91:603

    Article  CAS  PubMed  Google Scholar 

  40. Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Grimm MO, Mett J, Hartmann T (2016) The impact of vitamin E and other fat-soluble vitamins on Alzheimer’s disease. Int J Mol Sci 17:1785

    Article  PubMed Central  CAS  Google Scholar 

  42. Haggarty P (2015) Genetic and metabolic determinants of human epigenetic variation. Curr Opin Clin Nutr Metab Care 18:334

    Article  CAS  PubMed  Google Scholar 

  43. Hantson P, Mahieu P, Gersdorff M, Sindic C, Lauwerys R (1995) Fatal encephalopathy after otoneurosurgery procedure with an aluminum-containing biomaterial. Clin Toxicol 33:645–648

    CAS  Google Scholar 

  44. Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K, Murayama S, Ikeuchi T, Kuwano R (2017) Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol Commun 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184

    Article  CAS  PubMed  Google Scholar 

  46. Hinterberger M, Fischer P (2013) Folate and Alzheimer: when time matters. J Neural Transm 120:211–224

    Article  CAS  PubMed  Google Scholar 

  47. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18:1194–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Javed H, Khan MM, Khan A, Vaibhav K, Ahmad A, Khuwaja G, Ahmed ME, Raza SS, Ashafaq M, Tabassum R (2011) S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1389:133

    Article  CAS  PubMed  Google Scholar 

  49. Jonesrhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19

    Article  CAS  Google Scholar 

  50. Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154

    Article  CAS  PubMed  Google Scholar 

  51. Kwon MJ, Kim S, Han MH, Lee SB (2016) Epigenetic changes in neurodegenerative diseases. Mol Cell 39:783–789

    Article  CAS  Google Scholar 

  52. Lahiri DK, Maloney B (2010) The “LEARn” (latent early–life associated regulation) model integrates environmental risk factors and the developmental basis of Alzheimer’s disease, and proposes remedial steps. Exp Gerontol 45:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lahiri DK, Maloney B, Basha MR, Ge YW, Zawia NH (2007) How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: the “LEARn” model (latent early-life associated regulation) may explain the triggering of AD. Curr Alzheimer Res 4:219–228

    Article  CAS  PubMed  Google Scholar 

  54. Lardenoije R, Hove DLAVD, Havermans M, Casteren AV, Le KX, Palmour R, Lemere CA, Rutten BPF (2018) Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer’s disease. Mol Cell Neurosci 86:1–15

    Article  CAS  PubMed  Google Scholar 

  55. Liaquat L, Ahmad S, Sadir S, Batool Z, Khaliq S, Tabassum S, Emad S, Madiha S, Shahzad S, Haider S (2017) Development of AD like symptoms following co-administration of AlCl3 and D-gal in rats: a neurochemical, biochemical and behavioural study. Pak J Pharm Sci 30:647–653

    PubMed  Google Scholar 

  56. Liddell MB, Lovestone S, Owen MJ (2001) Genetic risk of Alzheimer’s disease: advising relatives. Br J Psychiatry J Ment Sci 178:7

    Article  CAS  Google Scholar 

  57. Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817

    Article  CAS  PubMed  Google Scholar 

  58. Lin WT, Chen RC, Lu WW, Liu SH, Yang FY (2015) Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci Rep 5:9671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu X, Deng Y, Yu D, Cao H, Wang L, Li L, Yu C, Zhang Y, Guo X, Yu G (2014) Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer’s disease. PLoS One 9:e103067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lunnon K, Mill J (2013) Epigenetic studies in Alzheimer’s disease: current findings, caveats, and considerations for future studies. Am J Med Genet B Neuropsychiatr Genet 162B:789–799

    Article  PubMed  CAS  Google Scholar 

  61. Ma J, Yang Q, Wei Y (2016) Effect of the PGD2-DP signaling pathway on primary cultured rat hippocampal neuron injury caused by aluminum overload. Sci Rep 6:24646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manivannan Y, Manivannan B, Beach TG, Halden RU (2015) Role of environmental contaminants in the etiology of Alzheimer’s disease: a review. Curr Alzheimer Res 12:116–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Maoz R, Garfinkel BP, Soreq H (2017) Alzheimer’s disease and ncRNAs. Springer International Publishing, Cham

    Book  Google Scholar 

  64. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31:2025

    Article  CAS  PubMed  Google Scholar 

  65. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011a) Epigenetic mechanisms in Alzheimer’s disease. Curr Med Chem 18:1751–1756

    Article  Google Scholar 

  66. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011c) Epigenetics mechanisms in Alzheimer’s disease. Neurobiol Aging 4:1161–1180

    Article  CAS  Google Scholar 

  67. Migliore L, Copped F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97

    Article  CAS  PubMed  Google Scholar 

  68. Mirza A, King A, Troakes C, Exley C (2017) Aluminium in brain tissue in familial Alzheimer’s disease. J Trace Elements Med Biol 40:30

    Article  CAS  Google Scholar 

  69. Morris G, Puri BK, Frye RE (2017) The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 32:1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nee LE, Eldridge R, Sunderland T, Thomas CB, Katz D, Thompson KE, Weingartner H, Weiss H, Julian C, Cohen R (1987) Dementia of the Alzheimer type: clinical and family study of 22 twin pairs. Neurology 37:359–363

    Article  CAS  PubMed  Google Scholar 

  71. Oshima E, Ishihara T, Yokota O, Nakashima-Yasuda H, Nagao S, Ikeda C, Naohara J, Terada S, Uchitomi Y (2013) Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol 23:633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pedersen NL (2010) Reaching the limits of genome-wide significance in Alzheimer disease: back to the environment. JAMA 303:1864–1865

    Article  CAS  PubMed  Google Scholar 

  73. Pratic D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16:1138

    Article  CAS  Google Scholar 

  74. Prema A, Justin TA, Manivasagam T, Mohamed EM, Guillemin GJ (2017) Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of Alzheimer’s disease. J Alzheimers Dis 60:S209–S220

    Article  CAS  PubMed  Google Scholar 

  75. Qazi TJ, Quan Z, Mir A, Hong Q (2017) Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol Neurobiol 55:1026–1044

    Article  PubMed  CAS  Google Scholar 

  76. Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L (1996) Alzheimer’s disease in Finnish twins. Lancet 347:573

    Article  CAS  PubMed  Google Scholar 

  77. Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L (1998) Environmental differences in twin pairs discordant for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 65:785–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2:e132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ribes D, Colomina MT, Vicens P, Domingo JL (2010) Impaired spatial learning and unaltered neurogenesis in a transgenic model of Alzheimer’s disease after oral aluminum exposure. Curr Alzheimer Res 7:401–408

    Article  CAS  PubMed  Google Scholar 

  81. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145

    Article  CAS  PubMed  Google Scholar 

  82. Ridge PG, Ebbert MTW, Kauwe JSK (1982) Genetics of Alzheimer’s disease. Arch Med Res 284:622–631

    Google Scholar 

  83. Rivera DS, Inestrosa NC, Bozinovic F (2016) On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 49:1–10

    Article  Google Scholar 

  84. Robinson M, Lee BY, Hane FT (2017) Recent progress in Alzheimer’s disease research, part 2: genetics and epidemiology. J Alzheimers Dis 57:317

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rondeau V, Jacqmingadda H, Commenges D, Helmer C, Dartigues JF (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496

    Article  PubMed  Google Scholar 

  86. Russ TC, Gatz M, Pedersen NL, Hannah J, Wyper G, Batty GD, Deary IJ, Starr JM (2015) Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. Epidemiology 26:263–270

    Article  PubMed  PubMed Central  Google Scholar 

  87. Said MM, Rabo MM (2017) Neuroprotective effects of eugenol against aluminium induced toxicity in the rat brain. Arch Ind Hyg Toxicol 68:27

    Google Scholar 

  88. Sanchez-Guerra M, Zheng Y, Osorio-Yanez C, Zhong J, Chervona Y, Wang S, Chang D, Mccracken JP, Diaz A, Bertazzi PA (2015) Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study. Epigenetics 10:633–642

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sanchez-Mut JV, Gräff J (2015) Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci 9:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sanchezmut JV, Heyn H, Vidal E, Moran S, Sayols S, Delgadomorales R, Schultz MD, Ansoleaga B, Garciaesparcia P, Ponsespinal M (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6:e718

    Article  CAS  Google Scholar 

  91. Serretti A, Olgiati P, De RD (2007) Genetics of Alzheimer’s disease. A rapidly evolving field. J Alzheimers Dis 12:73

    Article  CAS  PubMed  Google Scholar 

  92. Shu L, Sun W, Li L, Xu Z, Li L, Pei X, Hui S, Huang L, Qi X, Peng J (2016) Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease. BMC Genomics 17:381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Singla N, Dhawan DK (2016) Zinc improves cognitive and neuronal dysfunction during aluminium-induced neurodegeneration. Mol Neurobiol:1–17

    Google Scholar 

  94. Slooter AJ, Cruts M, Kalmijn S, Hofman A, Breteler MM, Van Broeckhoven C, Van Duijn CM (1998) Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: the Rotterdam study. Arch Neurol 55:964–968

    Article  CAS  PubMed  Google Scholar 

  95. Sun C, Lu L, Yu Y, Liu L, Hu Y, Ye Y, Jin C, Lin X (2016) Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J Exp Bot 67:979–989

    Article  CAS  PubMed  Google Scholar 

  96. Sweatt JD (2010) Mechanisms of memory, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  97. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron 80:624

    Article  CAS  PubMed  Google Scholar 

  98. Tacik P, Sanchezcontreras M, Rademakers R, Dickson DW, Wszolek ZK (2015) Genetic disorders with tau pathology: a review of the literature and report of two patients with tauopathy and positive family histories. Neurodegener Dis 16:12–21

    Article  PubMed  CAS  Google Scholar 

  99. Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567

    Article  CAS  PubMed  Google Scholar 

  100. Urdinguio RG, Sanchez-MUT JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8:1056

    Article  CAS  PubMed  Google Scholar 

  101. Virk SA, Eslick GD (2015) Aluminum levels in brain, serum, and cerebrospinal fluid are higher in Alzheimer’s disease cases than in controls: a series of meta-analyses. J Alzheimers Dis 47:629–638

    Article  CAS  PubMed  Google Scholar 

  102. Walton JR (2009) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30:182–193

    Article  CAS  PubMed  Google Scholar 

  103. Walton JR (2013) Aluminum’s involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35:7–43

    Article  CAS  PubMed  Google Scholar 

  104. Walton JR (2014) Chronic aluminum intake causes Alzheimer’s disease: applying Sir Austin Bradford Hill’s causality criteria. J Alzheimers Dis 40:765

    Article  CAS  PubMed  Google Scholar 

  105. Walton JR, Wang MX (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103:1548–1554

    Article  CAS  PubMed  Google Scholar 

  106. Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9:358

    Article  CAS  PubMed  Google Scholar 

  107. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev 12:1024–1041

    Article  CAS  PubMed  Google Scholar 

  109. Wang L, Hu J, Zhao Y, Lu X, Zhang Q, Niu Q (2014) Effects of aluminium on β-amyloid (1–42) and secretases (APP-cleaving enzymes) in rat brain. Neurochem Res 39:1338–1345

    Article  CAS  PubMed  Google Scholar 

  110. Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, Haroutunian V, Sharp AJ (2016) Genome-wide12 DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med 8:1–14

    Article  CAS  Google Scholar 

  111. Wen K, Mili J, Elkhodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J (2016) The role of DNA methylation and histone modifications in neurodegenerative diseases: a systematic review. PLoS One 11:e0167201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Whitehead MW, Farrar G, Christie GL, Blair JA, Thompson RP, Powell JJ (1997) Mechanisms of aluminum absorption in rats. Am J Clin Nutr 65:1446

    Article  CAS  PubMed  Google Scholar 

  113. Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ (2017) Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J Neurochem 140:703

    Article  CAS  PubMed  Google Scholar 

  114. Xi L, Li W, Yu C, Yu D, Gang Y (2015) Histone acetylation modifiers in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 9:226

    Google Scholar 

  115. Xing Y, Tang Y, Jia J (2015) Sex differences in neuropsychiatric symptoms of Alzheimer’s disease: the modifying effect of apolipoprotein Eε4 status. Behav Neurol 2015:1–6

    Article  Google Scholar 

  116. Yang WN, Hu XD, Han H, Shi LL, Feng GF, Liu Y, Qian YH (2014) The effects of valsartan on cognitive deficits induced by aluminum trichloride and d-galactose in mice. Neurol Res 36:651

    Article  CAS  PubMed  Google Scholar 

  117. Yang X, Yuan Y, Lu X, Yang J, Wang L, Song J, Nie J, Zhang Q, Niu Q (2015) The relationship between cognitive impairment and global DNA methylation decrease among aluminum Potroom workers. J Occup Environ Med 57:713–717

    Article  CAS  PubMed  Google Scholar 

  118. Yang X, Yuan Y, Niu Q (2016a) Effects of aluminium chloride on the methylation of app in hippocampal of rats. J Hyg Res 45:345

    Google Scholar 

  119. Yang XJ, Yuan YZ, Niu Q (2016b) Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis. Chin J Ind Hyg Occup Dis 34:255

    Google Scholar 

  120. Yegambaram M, Manivannan B, Beach TG, Halden RU (2015) Role of environmental contaminants in the etiology of Alzheimer’s disease: a review. Curr Alzheimer Res 12:116

    Article  CAS  PubMed  Google Scholar 

  121. Yuan Y, Yang X, Ren P, Kang P, Li Z, Niu Q (2015) Research of aluminum to the cognitive ability and genome-wide methylation in rats. J Hyg Res 44:359–363

    CAS  Google Scholar 

  122. Zaky A, Mohammad B, Moftah M, Kandeel KM, Bassiouny AR (2013) Apurinic/apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci 14:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zawilla NH, Taha FM, Kishk NA, Farahat SA, Farghaly M, Hussein M (2014) Occupational exposure to aluminum and its amyloidogenic link with cognitive functions. J Inorg Biochem 139:57

    Article  CAS  PubMed  Google Scholar 

  124. Zhang QL, Jia L, Jiao X, Guo WL, Ji JW, Yang HL, Niu Q (2012) APP/PS1 transgenic mice treated with aluminum: an update of Alzheimer’s disease model. Int J Immunopathol Pharmacol 25:49

    Article  CAS  PubMed  Google Scholar 

  125. Zhang L, Jin C, Liu Q, Lu X, Wu S, Yang J, Du Y, Zheng L, Cai Y (2013) Effects of subchronic aluminum exposure on spatial memory, ultrastructure and L-LTP of hippocampus in rats. J Toxicol Sci 38:255

    Article  PubMed  Google Scholar 

  126. Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L (2014) Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 323:95–108

    Article  CAS  PubMed  Google Scholar 

  127. Zhangyu Zou, Lui C, Chunhui Che, Huapin Huang (2014) Clinical genetics of Alzheimer’s disease. Biomed Res Int 2014:291862

    PubMed  PubMed Central  Google Scholar 

  128. Zovkic IB, Guzmankarlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, R. (2018). Cross Talk Between Aluminum and Genetic Susceptibility and Epigenetic Modification in Alzheimer’s Disease. In: Niu, Q. (eds) Neurotoxicity of Aluminum. Advances in Experimental Medicine and Biology, vol 1091. Springer, Singapore. https://doi.org/10.1007/978-981-13-1370-7_10

Download citation

Publish with us

Policies and ethics