Skip to main content

Monoclonal antibodies and their immunoconjugates represent one of the first practical methods for the selective treatment of cancer [49, 96]. Monoclonal antibody technology now allows for the generation of antibodies or “cocktails” of antibodies that have some selectivity for cancer tissue as compared with the normal tissue of origin. These antibodies can be tested as unconjugated antibody alone or in conjunction with effector cells. The “signal strength” of the antibody may be made more powerful by conjugating antibody to drugs, toxins, bio-logicals, and radioisotopes with different mechanisms of action and different levels of potency. This chapter will focus on the use of drug immunoconjugates for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboukameel A., Goustin A.S., Al-Khatib A., et al. Blood (ASH Meeting Abstracts) 2007;110: Abstract 2339.

    Google Scholar 

  2. Andrew AM, Pim MV, Perkins AC, Baldwin RW. Comparative imaging and biodistribution studies with an anti-CEA monoclonal antibody and its F(ab)2 and Fab fragments in mice with colon carcinoma xenografts. Eur J Nucl Med 1986;12:168–175.

    Article  CAS  PubMed  Google Scholar 

  3. Avner B, Avner BP, Gaydos B, et al. Characterization of a method using viable human target cells as the solid phase in a cell concentration fluorescence immunoassay (CCFIA) for screening of monoclonal antibodies and hybridoma supernatants. J Immunol Methods 1988;113:123–135.

    Article  CAS  PubMed  Google Scholar 

  4. Avner BP, Liao SK, Avner B, et al. Therapeutic murine monoclonal antibodies developed for individual cancer patients. J Biol Response Modif 1989;8(1):25–36.

    CAS  Google Scholar 

  5. Avner B, Swindell L, Sharp E, et al. Evaluation and clinical relevance of patient immune responses to intravenous therapy with murine monoclonal antibodies conjugated to adriamycin. Mol Biother 1991;3(1):14–21.

    CAS  PubMed  Google Scholar 

  6. Bagshawe KD. Antibody directed enzymes activate prodrugs at tumor site. Order SE, ed. Antibody Immunoconj. Radiopharm. 1990;3(1):60.

    Google Scholar 

  7. Ballantyne KC, Perkins AC, Pimm MV, et al. Localization of monoclonal antibody-drug conjugate 791T/36-methotrexate in colorectal cancer. STS Abstr 1986;No.88.

    Google Scholar 

  8. Ballantyne KC, Perkins AC, Pimm MV, Hardcastle JD, et al. Biodistribution of a monoclonal antibody-methotrexate conjugate (791T/36-MTX) in patients with colorectal cancer. Int J Cancer Suppl 1988;2:103–108.

    Article  CAS  Google Scholar 

  9. Ballou B, Jaffe R, Persiani S, et al. Tissue localization of metho-trexate-monoclonal-IgM immunoconjugates: anti-SSEA-1 and MOPC 104E in mouse teratocarcinomas and normal tissues. Cancer Immunol Immunother 1992;35:251–256.

    Article  CAS  PubMed  Google Scholar 

  10. Belles-Isles M, Page M. In vitro activity of daunomycin anti-alpha-fetoprotein conjugate on mouse hepatoma cell. Cancer (Phila) 1980;41:841–845.

    CAS  Google Scholar 

  11. Blumenthal R, Stein R, Michell R, et al. Anti-CD74-doxorubicin immunoconuugate (IMMU-110) is cytotoxic in non-Hodgki's lymphoma (NHL) models and overcomes MDR. J Clin Oncol 2006 ASCO Annual Meeting Proceedings Part 1, Vol. 24, June 20.

    Google Scholar 

  12. Carrasquillo JA, Abrams PG, Schroff R, et al. Effect of antibody dose on the imaging and biodistribution of indium-111 9.2.27 anti-melanoma monoclonal antibody. J Nucl Med 1988;29(1): 39–47.

    CAS  PubMed  Google Scholar 

  13. Carrasquillo JA, Bunn PA, Kennan AM, et al. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-T101 monoclonal antibody. N Engl J Med 1986;315:673–680.

    Article  CAS  PubMed  Google Scholar 

  14. Carter G, White P, Fernie M, Carr FJ, et al. Enhanced antitumour effect of liposomal daunorubicin using antibody-phospholipase C conjugates or fusion protein. Int J Oncol 13 819–825, 1998

    CAS  PubMed  Google Scholar 

  15. Chanan-Khan A., Jagannath S., Fram R., et al. Phase I study of huN901-DM1 (BB-10901) in patients with relapsed and relapsed/refractory CD-56 positive multiple myeloma. Blood Nov.2007;110:11.

    Google Scholar 

  16. Chari RJ, Gross JL, Goldmacher VS, et al. Conjugates of monoclonal antibodies and cytotoxic macrolide drugs: potent, target specific antibody-drug conjugates. Antibody Immunoconj Radiopharm 1990;3(1):64.

    Google Scholar 

  17. Chari VJ, Martell BA, Gross JL, et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 1992;52:127–131.

    CAS  PubMed  Google Scholar 

  18. Dillman RO. Monoclonal antibodies in the treatment of cancer. Crit Rev Hematol Oncol 1984;1:357–386.

    Article  CAS  Google Scholar 

  19. Dillman RO. Monoclonal antibodies for treating cancer. Ann Intern Med 1989;111:592–603.

    CAS  PubMed  Google Scholar 

  20. Dillman RO. Human antimouse and antiglobulin responses to monoclonal antibodies. Antibody Immunocon Radiopharm 1990;3(1):1–16.

    Google Scholar 

  21. Dillman RO, Shawler DL, Sobol RE. Murine monoclonal antibody therapy in two patients with chronic lymphocytic leukemia. Blood 1982;59:1036–1046.

    CAS  PubMed  Google Scholar 

  22. Dillman RO, Shawler DL, Johnson DE, et al. Preclinical trials with combinations and conjugates of T101 and doxorubicin. Cancer Res 1986;46:4886–4891.

    CAS  PubMed  Google Scholar 

  23. Dillman RO, Johnson DE, Shawler DL. Comparisons of drug and toxin immunoconjugates. Antibody Immunocon Radiopharm 1988;1:65–77.

    CAS  Google Scholar 

  24. Dillman RO, Johnson DE, Shawler DL, Koziol JA. Superiority of an acid-labile daunorubicin-monoclonal antibody immunoconjugate compared to free drug. Cancer Res 1988;48:6097–6102.

    CAS  PubMed  Google Scholar 

  25. Embleton MJ. Drug targeting by monoclonal antibodies. Br J Cancer 1987;55:227–231.

    Article  CAS  PubMed  Google Scholar 

  26. Elias DJ, Kline LE, Robbins BA, et al. Monoclonal antibody KS1/4-methotrexate immunoconjugate studies in non-small cell lung carcinoma. Am J Resp Crit Care Med 1994;150:1114–1122.

    CAS  PubMed  Google Scholar 

  27. Fayad L., Patel H., Advani A., et al. Clinical activity of the immu-noconjugate CMC-544 in B-cell malignancies: preliminary report of the expanded maximum tolerated dose (MTD) cohort of a phase 1 study. Blood (ASH Annual Meeting Abstracts) 2006;108: Abstract 2711.

    Google Scholar 

  28. FDA NEWS Oct. 29, 2007; Vol. 5 No. 212.

    Google Scholar 

  29. Fidler IJ, Poste G. The cellular heterogeniety of malignant neoplasms: implications for adjuvant chemotherapy. Semin Oncol 1985;12:207–221.

    CAS  PubMed  Google Scholar 

  30. Foon KA, Bernhard MI, Oldham RK. Monoclonal antibody therapy: assessment by animal tumor models. J Biol Response Modif 1982;1:277–304.

    Google Scholar 

  31. Foon KA, Bunn PA, Schroff RW, et al. Monoclonal antibody therapy of chronic lymphocytic leukemia and cutaneous T-cell lymphoma preliminary observations. In: Boss BD, Langman RE, Trowbridge IS, Dudlbecco R, eds. Monoclonal Antibody and Cancer. New York: Academic, 1983:39–52

    Google Scholar 

  32. Ford CH, Newman CE, Johnson JR, et al. Localization and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Br J Cancer 1983;47:35–42.

    Article  CAS  PubMed  Google Scholar 

  33. Ghose T, Blair AH. Antibody linked cytotoxic agents in the treatment of cancer: current status and future prospects. J Natl Cancer Inst 1978;61:657–676.

    CAS  PubMed  Google Scholar 

  34. Ghose T, Blair AH, Uadia P, et al. Antibodies as carriers of cancer chemotherapeutic agents. Ann NY Acad Sci 1985;446:213–227.

    Article  CAS  PubMed  Google Scholar 

  35. Goldenberg DM, DeLand FH. History and status of tumor imaging with radiolabled antibodies. J Biol Response Modif 1982;1:121–136.

    Google Scholar 

  36. Goodman GE, Beauimer P, Hellstrom I, et al. Phase I trial of murine monoclonal antibodies in patients with advanced melanoma. J Clin Oncol 1984;3:340–352.

    Google Scholar 

  37. Guillemard V, Saragovi HU. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity. Cancer Res. 2001;61:694–699.

    CAS  PubMed  Google Scholar 

  38. Hellstrom I, Hellstrom KE, Siegall CB, Trail PA. Immunoconjugates and immunotoxins for therapy of carcinomas. In August JT, Anders MW, Murad F, Coyle JT, eds., Advances in Pharmacology, Vol. 33, edition 1. San Diego, CA: Academic; 1995:349–388.

    Google Scholar 

  39. Hernandez-Ilizaliturri F., Devineni S., Cruczman M., et al. Targeting CD20 and CD22 with rituximab in combination with CMC-544 results in improved anti-tumor activity against non-Hodgkin's lymphoma pre-clinical models. Blood (ASH Meeting Abstracts) 2005;106:Abstract 1473.

    Google Scholar 

  40. Hurwitz E, Levy R, Maron, et al. The covalent binding of daunomycin and Adriamycin to antibodies with retention of both drug antibody activities. Cancer Res 1975;3:1175–1181.

    Google Scholar 

  41. Hwang KM, Foon KA, Cheung PH, et al. Selective antitumor effect on L-10 hepato-carcinoma cells of a potent immunoconjugate composed of the A chain for abrin and monoclonal antibody to a hepatoma-associated antigen. Cancer Res 1984;44:4578–4586.

    CAS  PubMed  Google Scholar 

  42. Hwang KM, Foon KA, Cheung PH, et al. Selective antitumor effect of a potent immunoconjugate composed of the A chain of abrin and monoclonal antibody to a hepatola associate antigen. Cancer Res 1984b;44:4578–4586.

    CAS  Google Scholar 

  43. Hwang KM, Keenan AM, Frincke J, et al. Dynamic interaction of 111 indium-labeled monoclonal antibodies with surface of solid tumors visualized in vivo by external scintigraphy. J Nat Cancer Inst 1986;76:849–855.

    CAS  PubMed  Google Scholar 

  44. Johnson JR, Ford CMG, Newman E, et al. A vindesine-anti-CEA conjugate cytotoxic for human cancer cell in vitro. Br J Cancer 1981;44:472–477.

    Article  CAS  PubMed  Google Scholar 

  45. Krizan Z, Murray JL, Hersh EM, et al. Increased labeling of human melanoma cells in vitro using combinations of monoclonal antibodies recognizing separate cell surface antibenic determinants. Cancer Res 1985;45:4904–4909.

    CAS  PubMed  Google Scholar 

  46. Larson SM, Brown JP, Wright PW, et al. Imaging of melanoma with I-labeled monoclonal antibodies. J Nucl Med 1983;24: 123–129.

    CAS  PubMed  Google Scholar 

  47. Lee FH, Hwang KM. Antibodies as specific carriers for chemo-therapeutic agents. Cancer Chemother Pharmacol 1979;3:17–25.

    Article  CAS  PubMed  Google Scholar 

  48. Legrand O., Vidriales M., Marie J.P., et al. An open label dose escalation study of AVE9633 administered as a single agent by intravenous infusion weekly for 2 weeks in 4-week cycle to patients with relapsed or refractory CD-33 positive acute myeloid leukemia. Blood (ASH Annual Meeting Abstracts) 2007;110: Abstract 1850.

    Google Scholar 

  49. Levy R. Biologicals for cancer treatment: monoclonal antibodies. Hosp Pract 1985;November 15:67–92.

    Google Scholar 

  50. Liao SK, Meranda C, Avner BP, et al. Immunohistochemical phe-notyping of human solid tumors with monoclonal antibodies in devising biotherapeutic strategies. Cancer Immunol Immunother 1989;28:77–86.

    Article  CAS  PubMed  Google Scholar 

  51. McCann J., Fossella F.M., Fram R., et al. Phase II trial of huN9-01-DM1 in patients with relapsed small cell lung cancer and CD56-positive small cell carcinoma. JCO, 2007 ASCO Annual Meeting Proceedings Part I, Vol. 25, No. 18s, 2007: 18084

    Google Scholar 

  52. McLauglin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833, 1998.

    Google Scholar 

  53. Miller RA, Levy R. Response of cutaneous T-cell lymphoma to therapy with hybridoma monoclonal antibody. Lancet 1981;2:226–230.

    Article  CAS  PubMed  Google Scholar 

  54. Miller RA, Maloney DG, Warnke R, et al. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982;306:517–522.

    Article  CAS  PubMed  Google Scholar 

  55. Newton DL, Hansen HJ, Mikulski SM, Rybak SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood. 2001;97:528–535.

    Article  CAS  PubMed  Google Scholar 

  56. Ogden JR, Leung K, Kundra SA, et al. Immunoconjugates of dox-orubicin and murine antihuman breast carcinoma monoclonal antibodies prepared via an n-hydroxysuccinimide active ester intermediate of cis-aconityl-doxorubicin: preparation and in vitro cytotoxicity. Mol Biother 1989;1(3):170–174.

    CAS  PubMed  Google Scholar 

  57. Ohkawa K, Hibi N, Tsukada Y. Evaluation of a conjugate of purified antibodies against human AFP-dextran-daunorubicin to human AFP-producing yolk sac tumor cell lines. Cancer Immunol Immunother 1986;22:81–86.

    Article  CAS  PubMed  Google Scholar 

  58. Oldham RK. Monoclonal antibodies in cancer therapy. J Clin Oncol 1983;1:582–590.

    CAS  PubMed  Google Scholar 

  59. Oldham RK. Biologicals: new horizons in pharmaceutical development. J Biol Response Modif 1983;2:199–206.

    CAS  Google Scholar 

  60. Oldham RK. Biologicals and biological response modifiers: fourth modality of cancer treatment. Cancer Treat Rep 1984;68:221–232.

    CAS  PubMed  Google Scholar 

  61. Oldham RK. Therapeutic monoclonal antibodies: effects of tumor cell heterogeniety. In: Present Status of Nontoxic Concepts in Cancer Therapy, Cancer Treatment Symposium (Germany), S Karger, 1986.

    Google Scholar 

  62. Oldham RK, Foon KA, Morgan AC, et al. Monoclonal antibody therapy of malignant melanoma: in vivo localization in cutaneous metastasis after intravenous administration. J Clin Oncol 1984;2:1235–1242.

    CAS  PubMed  Google Scholar 

  63. Oldham RK, Morgan AC, Woodhouse CS, et al. Monoclonal antibodies in the treatment of cancer: preliminary observations and future prospects. Med Oncol Tumor Pharmocol 1984;1(2):51–62.

    CAS  Google Scholar 

  64. Oldham RK. Antibody-drug and antibody toxin conjugates. In Reif AE, Mitchell MS, eds., Immunity to Cancer. New York: Academic, 1985:575–586

    Google Scholar 

  65. Oldham RK. Monoclonal antibodies: does sufficient selectivity to cancer cells exist for therapeutic application? J Biol Response Modif, 1987; 6:227–234

    CAS  Google Scholar 

  66. Oldham RK. Immunoconjugates drugs and toxins. In: Oldham RK, ed., Principles of Cancer Biotherapy. New York: Raven Press, 1987:319–335

    Google Scholar 

  67. Oldham RK. Monoclonal antibody therapy. In Chiao JW, ed., Biological Response Modifiers and Cancer Research, Vol. 40. New York: Marcel Dekker, 1988:3–16.

    Google Scholar 

  68. Oldham RK, Lewis M, Orr DW, et al. Individually specified drug immunoconjugates in cancer treatment. Imperial Cancer Research Conference, England, 1990.

    Google Scholar 

  69. Oldham RK. Who pays for new drugs? Nature 1988;332(28):795.

    Article  CAS  PubMed  Google Scholar 

  70. Oldham RK, Lewis M, Orr DW, et al. Adriamycin custom-tailored immunoconjugates in the treatment of human malignancies. Mol Biother 1988;1(2):103–113.

    CAS  PubMed  Google Scholar 

  71. Oldham RK, Lewis M, Orr DW, et al. Individually specified drug immunoconjugates in cancer treatment. In: Ceriani RL, ed., Breast Cancer Immunodiagnosis and Immunotherapy Proceeding. Proceedings of the 12th World Congress of Obstetrics and Gynecology, 1990.

    Google Scholar 

  72. Oldham RK. Monoclonal antibodies. In Nathanson L, ed. Management of Advanced Melanoma. Contemporary Issues in Clinical Oncology. New York: Churchill Livingstone, 1986:195–207.

    Google Scholar 

  73. Oldham RK. Custom tailored drug immunoconjugates in cancer therapy. Mol Biother 1991;3(3):148–162.

    CAS  PubMed  Google Scholar 

  74. Oldham RD, Dillman RO. Monoclonal antibodies in cancer therapy; twenty-five years of progress, JCO 2008;26(11)1774–1777.

    Article  Google Scholar 

  75. Orr DW, Oldham RK, Lewis M, et al. Phase I trial of mitomycin-c immunoconjugate cocktails in human malignancies. Mol Biother 1989;1(4):229–240.

    CAS  PubMed  Google Scholar 

  76. Ozaki S.,Tomura T., Matsumoto T. et al. Anti-myeloma activity of the Maytanisoid immunoconjugate of internalizing human monoclonal antibody specific for HM1.24/BST2 (CD317). Blood (ASH Meeting Abstracts), Nov 2005;106:3388.

    Google Scholar 

  77. Pavanasasivam G, Pearson JW, Bohn W, et al. Immunotoxins to a human melanoma asociated antigen: comparison of gelonin with ricin and other A-chain conjugates. Cancer Res 1987;47:3169–3173.

    Google Scholar 

  78. Philpott GW, Gass EH, Panker CW. Affinity cytotoxicity with an alcohol dehydrogenase-antibody conjugate and allyl alcohol. Cancer Res 1979;39:2084–2087.

    CAS  PubMed  Google Scholar 

  79. Pietersz GA, Smyth MJ, Kanellos J. Preclinical and clinical studies with a variety of immunoconjugates. Antibody Immunocon Radiopharm 1988;1:79–103.

    CAS  Google Scholar 

  80. Polson A., Yu S.F., Ebens A., et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood, 15 July 2007;110(2):616–623.

    Article  CAS  PubMed  Google Scholar 

  81. Raso V, Raso J, Basala M, Schlossman S. Monoclonal antibody-ricin A chain conjugate selectivity cytotoxic for cells bearing the common acute lymphoblastic leukemia antigen. Cancer Res 1980;42:457–464.

    Google Scholar 

  82. Riethmuller G, Holz E, Schlimok G, Hirche H, et al. Monoclonal antibody therapy for resected Duke's C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998,16:1788–1794.

    CAS  PubMed  Google Scholar 

  83. Ritz J, Schlossman SF. Utilization of monoclonal antibodies in treatment of leukemia and lymphoma. Blood 1982;59:1–11.

    CAS  PubMed  Google Scholar 

  84. Rowland AJ and Pietersz GA. Reduction in the toxicity of aminop-terin-monoclonal-antibody conjugates by leucovorin. Cancer Immunol Immunother 1994;39:135–139.

    CAS  PubMed  Google Scholar 

  85. Rowland AJ, Pietersz GA and McKenzie IFC. Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immuno-conjugates. Cancer Immunol Immunother 1993;37:195–202.

    Article  CAS  PubMed  Google Scholar 

  86. Rowland GF, Corvalan JRF, Axton CA, et al. Suppression of growth of human colorectal tumor in nude mice by vindesine-monoclonal antibody CEA conjugates. Protides Biol Fluids 1984;31:783–786.

    Google Scholar 

  87. Rowland GF, Axton CA, Baldwin RW, et al. Antitumor properties of vindesine-monoclonal antibody conjugates. Cancer Immun Immunotherapy 1985;19:1–7.

    CAS  Google Scholar 

  88. Rowland GF, Simmonds RG, Grove VA, Smith W, et al. Drug localization and growth inhibition studies of vindesine-monoclonal anti-CEA conjugates in human xenograft. Cancer Immun Immunother 1986;21:183–187.

    CAS  Google Scholar 

  89. Schilsky RL. Tumor cell heterogeniety: implications for clinical practice. Semin Oncol 1985;12:203–206.

    CAS  PubMed  Google Scholar 

  90. Schnipper LE. Clinical implications of tumor cell heterogeniety. N Engl Med 1986;314:1423–1431.

    Article  CAS  Google Scholar 

  91. Schroff RW, Farrell MM, Klein RA, et al. T65 antigen modulation in a phase I monoclonal antibody trial with chronic lymphocytic leukemia patients. J Immunol 1984;133:1641–1648.

    CAS  PubMed  Google Scholar 

  92. Schroff RW, Foon KA, Beatty SM, et al. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 1985;45:879–885.

    CAS  PubMed  Google Scholar 

  93. Schroff RW, Morgan AC, Woodhouse CS, et al. Monoclonal antibody therapy in malignant melanoma: factors effecting in vivo localization. J Biol Response Modif 1987.

    Google Scholar 

  94. Schroff RW, Woodhouse CS, Foon KA, et al. Intratumor localization of monoclonal antibody in patients with melanoma treated with antibody to a 250Kd melanoma associated antigen. JNCI 1985;74:299–306.

    CAS  PubMed  Google Scholar 

  95. Sears HF, Herlym D, Steplewski Z, Koprowski H. Effects of monoclonal antibody immunotherapy in patients with gastrointestinal adenocarcinoma. J Biol Response Modif 1984;3: 138–150.

    CAS  Google Scholar 

  96. Sears HF, Mattis J, Herlyn D, et al. Phase-1 clinical trial of monoclonal antibody in treatment of gastrointestinal tumors. Lancet 1982;1:762–765.

    Article  CAS  PubMed  Google Scholar 

  97. Shawler DL, Johnson DE, Sweet MD, et al. Preclinical trials using an immunoconjugate of T101 and methotrexate in an athymic mouse/human T-cell tumor model. J Biol Response Modif 1988;7:608–618.

    CAS  Google Scholar 

  98. Sievers EL, Larson RA, Stadtmauer EA, Appelbaum FR, et al. Efficacy and Safety of Gemtuzumab Ozogamicin in Patients With CD33-Positive Acute Myeloid Leukemia in First Relapse. J Clin Oncol 19: 3244–3254, 2001.

    CAS  PubMed  Google Scholar 

  99. Sivam G, Comezoglu FT, Vrudhula VM, et al. Immunoconjugates of a small molecule protein synthesis inhibitor (trichothecene) –an update Antibody Immunocon Radiopharm 1990;3(1):63.

    Google Scholar 

  100. Sjogren HO, Isaksson M, Willner D, Trail PA, et al. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res 1997;57:4530–4536.

    CAS  PubMed  Google Scholar 

  101. Smith TW. Antitumor properties of vindesine-monoclonal antibody conjugates. Cancer Immunol Immunother 1985;19:1–7.

    Google Scholar 

  102. Stastny JJ and Das Gupta TK. The use of daunomycin-antibody immunoconjugates in managing soft tissue sarcomas: nude mouse xenograft model. Cancer Res 53:5740–5744, 1993.

    CAS  PubMed  Google Scholar 

  103. Stein, R. ASCO Annual Meeting Proceedings, 2004; 22(14S):6535.

    Google Scholar 

  104. Takahashi T, Yamaguchi T, Noguchi A, et al. Clinical trial of monoclonal antibody-drug conjugate, A7-NCS, for 70 patients with col-orectal cancer. Antibody Immunocon Radiopharm 1990;3(1):60.

    Google Scholar 

  105. Thorpe PE, Ross WCJ. The preparation and cytotoxic properties of antibody-toxin conjugated. Immunol Rev 1982;62:119.

    Article  CAS  PubMed  Google Scholar 

  106. Toshiyuki S, Nagamura S, Saito H, Yamasaki M, et al. Synthesis of a novel duocarmycin derivative DU-257 and its application to immunoconjugate using poly(ethylene glycol)-dipeptidyl linker capable of tumor specific activation. Bioorgan Medicin Chem 8 (2000);2175–2184.

    Article  Google Scholar 

  107. Trail PA, Willner D, Lasch SJ, Hellstrom KE, et al. Cure of xeno-grafted human carcinomas by BR96-doxorubicin immunoconju-gates. Science 1993,261: 212–215.

    Article  CAS  PubMed  Google Scholar 

  108. Trail PA, Willner D, Hellstrom KE. Site-directed delivery of anthra-cyclines for cancer therapy. Drug Dev Res 1995,34:196–209.

    Article  CAS  Google Scholar 

  109. Tsukada Y, Hurwitz E, Kashi R, et al. Chemotherapy by intravenous administration of conjugates of daunomycin with monoclonal conventional anti-rat-alpha-fetoprotein antibodies. Proc Natl Acad Sci USA 1982;79:7896–7899.

    Article  CAS  PubMed  Google Scholar 

  110. Uckun FM, Evans WE, Forsyth CJ, et al. Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267:886–891, 1995.

    Article  CAS  PubMed  Google Scholar 

  111. van der Velden VHJ, te Marvelde JG, Hoogeveen PG, van Dongen JJM, et al. Targeting of the CD33-calicheamicin immu-noconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97:3197–3204.

    Article  Google Scholar 

  112. Vogel C, Cobleigh MA, Tripathy D, Stewart SJ, et al. First-line, single-agent Herceptin (trastuzumab) in metastatic breast cancer: a preliminary report. Eur J Cancer Jan 2001;37 Suppl 1:S 25–29.

    CAS  Google Scholar 

  113. Vogel C-W, ed. Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer. New York: Oxford University Press, 1987.

    Google Scholar 

  114. Von Hoff DD. Implications of tumor cell heterogeneity for in vitro drug sensitivity testing. Semin Oncol 1985;12:327–331.

    Google Scholar 

  115. Yarbro JW. Introduction: tumor heterogeniety and the new biology. Semin Oncol 1985;12:201–202.

    Google Scholar 

  116. Yoshibumi K, Tsukazaki K, Kubushiro K, Nozawa S, et al. Selective cytotoxicity of adriamycin immunoconjugate antibody MSN-1 to endometrial adenocarcinoma in vitro and in vivo. Oncol Reports 2000;7:1099–1106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Safa, M., Foon, K.A., Oldham, R.K. (2009). Drug Immunoconjugates. In: Oldham, R.K., Dillman, R.O. (eds) Principles of Cancer Biotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2289-9_12

Download citation

Publish with us

Policies and ethics