Skip to main content

Aberrant protein expression of transcription factors BACH1 and ERG, both encoded on chromosome 21, in brains of patients with Down syndrome and Alzheimer’s disease

  • Chapter
Book cover Advances in Down Syndrome Research

Part of the book series: Journal of Neural Transmission Supplement 67 ((NEURAL SUPPL,volume 67))

Summary

Down syndrome (DS; trisomy 21) is a genetic disorder associated with early mental retardation and patients inevitably develop Alzheimer’s disease (AD)-like neuropathological changes. The molecular defects underlying the DS — phenotype may be due to overexpression of genes encoded on chromosome 21. This so-called gene dosage hypothesis is still controversial and demands systematic work on protein expression. A series of transcription factors (TF) are encoded on chromosome 21 and are considered to play a pathogenetic role in DS. We therefore decided to study brain expression of TF encoded on chromosome 21 in patients with DS and AD compared to controls: Frontal cortex of 6 male DS patients, 6 male patients with AD and 6 male controls were used for the experiments. Immunoblotting was used to determine protein levels of TF BACH1, ERG, SIM2 and RUNX1. SIM2 and RUNX1 were comparable between groups, while BACH1 was significantly reduced in DS, and ERG was increased in DS and AD as compared to controls. These findings may indicate that DS pathogenesis cannot be simply explained by the gene dosage effect hypothesis and that results of ERG expression in DS were paralleling those in AD probably reflecting a common pathogenetic mechanism possibly explaining why all DS patients develop AD like neuropathology from the fourth decade. We conclude that TF derangement is not only due to the process of neurodegeneration and propose that TFs BACH1 and ERG play a role for the development of AD — like neuropathology in DS and pathogenesis of AD per se and the manifold increase of ERG in both disorders may form a pivotal pathogenetic link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asou N (2003) The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 45: 129–150

    Article  PubMed  Google Scholar 

  • Aziz-Aloya RB, Levanon D, Kam H, Kidron D, Goldenberg D, Lotem J, Polak-Chaklon S, Groner Y (1998) Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death Differ 5: 765–773

    Article  PubMed  CAS  Google Scholar 

  • Basuyaux JP, Ferreira E, Stehelin D, Buttice G (1997) The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner J Biol Chem 272: 26188–26195

    CAS  Google Scholar 

  • Bernardin F, Friedman AD (2002) AML1 stimulates G1 to S progression via its transactivation domain. Oncogene 21: 3247–3252

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ (1999) Neuropathology. J Neural Transm [Suppl] 57: 61–74

    CAS  Google Scholar 

  • Cheon MS, Bajo M, Kim SH, Claudio JO, Stewart AK, Patterson D, Kruger WD, Kondoh H, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis, part II Amino Acids 24: 119–125

    CAS  Google Scholar 

  • Cheon MS, Kim SH, Ovod V, Kopitar Jerala N, Morgan JI, Hatefi Y, Ijuin T, Takenawa T, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis, part III Amino Acids 24: 127–134

    CAS  Google Scholar 

  • Cheon MS, Kim SH, YaspoML, Blasi F, Aoki Y, Melen K, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis, part I. Amino Acids 24: 111–117

    PubMed  CAS  Google Scholar 

  • Cheon MS, Shim KS, Kim SH, Hara A, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis, part IV. Amino Acids 25: 41–47

    PubMed  CAS  Google Scholar 

  • Chrast R, Scott HS, Madani R, Huber L, Wolfer DP, Prinz M, Aguzzi A, Lipp HP, Antonarakis SE (2000) Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum Mol Genet 9: 1853–1864

    Article  PubMed  CAS  Google Scholar 

  • Erna M, Ikegami S, Hosoya T, Mimura J, Ohtani H, Nakao K, Inokuchi K, Katsuki M, Fujii-Kuriyama Y (1999) Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down’s syndrome. Hum Mol Genet 8: 1409–1415

    Article  Google Scholar 

  • Engidawork E, Lubec G (2003) Molecular changes in fetal Down syndrome brain. J Neurochem 84: 895–904

    Article  PubMed  CAS  Google Scholar 

  • Engidawork E, Balic N, Fountoulakis M, Dierssen M, Greber-Platzer S, Lubec G (2001) Beta-amyloid precursor protein, ETS-2 and collagen alpha 1 (VI) chain precursor, encoded on chromosome 21, are not overexpressed in fetal Down syndrome: further evidence against gene dosage effect. J Neural Transm [Suppl] 61: 335–346

    Google Scholar 

  • Epstein CJ (1995) Down syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn, vol I. McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Fan CM, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein LR, Tessier-Lavigne M (1996) Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Fang-Kircher SG, Labudova O, Kitzmueller E, Rink H, Cairns N, Lubec G (1999) Increased steady state mRNA levels of DNA-repair genes XRCC1, ERCC2 and ERCC3 in brain of patients with Down syndrome. Life Sci 64: 1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Ferrando-Miguel R, Lubec G (2003) Overexpression of transciption factor BACH1 in fetal Down syndrome brain. J Neural Transm [Suppl] 67 (this volume)

    Google Scholar 

  • Freidl M, Gulesserian T, Lubec G, Fountoulakis M, Lubec B (2001) Deterioration of the transcriptional, splicing and elongation machinery in brain of fetal Down syndrome. J Neural Transm [Suppl] 61: 47–57

    Google Scholar 

  • Greber-Platzer S, Balcz B, Cairns N, Lubec G (1999) c-fos expression in brains of patients with Down syndrome. J Neural Transm [Suppl] 57: 75–85

    CAS  Google Scholar 

  • Guenal I, Risler Y, Mignotte B (1997) Down-regulation of actin genes precedes microfilament network disruption and actin cleavage during p53-mediated apoptosis. J Cell Sci 110: 489–495

    PubMed  CAS  Google Scholar 

  • Gulesserian T, Engidawork E, Fountoulakis M, Lubec G (2001) Antioxidant proteins in fetal brain: superoxide dismutase-1 (SOD-1) protein is not overexpressed in fetal Down syndrome. J Neural Transm [Suppl] 61: 71–84

    Google Scholar 

  • He X, Rosenfeld MG (1991) Mechanisms of complex transcriptional regulation: implications for brain development. Neuron 7: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Hewett PW, Nishi K, Daft EL, Clifford Murray J (2001) Selective expression of erg isoforms in human endothelial cells. Int J Biochem Cell Biol 33: 347–355

    Article  PubMed  CAS  Google Scholar 

  • Katsuoka F, Motohashi H, Tamagawa Y, Kure S, Igarashi K, Engel JD, Yamamoto M (2003) Small Maf compound mutants display central nervous system neuronal degeneration, aberrant transcription, and Bach protein mislocalization coincident with myoclonus and abnormal startle response. Mol Cell Biol 23: 1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, Hattori T, Shirato K, Igarashi K, Shibahara S (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 278: 9125–9133

    Article  PubMed  CAS  Google Scholar 

  • Labudova O, Krapfenbauer K, Moenkemann H, Rink H, Kitzmuller E, Cairns N, Lubec G (1998) Decreased transcription factor junD in brains of patients with Down syndrome. Neurosci Lett 252: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Labudova O, Kitzmueller E, Rink H, Cairns N, Lubec G (1999) Gene expression in fetal Down syndrome brain as revealed by subtractive hybridization. J Neural Transm [Suppl] 57: 125–136

    CAS  Google Scholar 

  • LeBlanc A (1998) Detection of actin cleavage in Alzheimer’s disease. Am J Pathol 152: 329–332

    Google Scholar 

  • Levanon D, Brenner O, Negreanu V, Bettoun D, Woolf E, Eilam R, Lotem J, Gat U, Otto F, Speck N, Groner Y (2001) Spatial and temporal expression pattern of Runx3 (Am12) and Runxl (Am11) indicates non-redundant functions during mouse embryo-genesis. Mech Dev 109: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Lubec G, Engidawork E (2002) The brain in Down syndrome (TRISOMY 21). J Neurol 249: 1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Maroulakou IG, Bowe DB (2000) Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene 19: 6432–6442

    Article  PubMed  CAS  Google Scholar 

  • Mazzola JL, Sirover MA (2002) Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders. Neurotoxicology 23: 603–609

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Part 2 Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Moffett P, Dayo M, Reece M, McCormick MK, Pelletier J (1996) Characterization of msim, a murine homologue of the Drosophila sim transcription factor. Genomics 35: 144–155

    Article  PubMed  CAS  Google Scholar 

  • Muenke M, Bone LJ, Mitchell HF, Hart I, Walton K, Hall-Johnson K, Ippel EF, Dietz-Band J, Kvaloy K, Fan CM (1995) Physical mapping of the holoprosencephaly critical region in 21q22.3, exclusion of SIM2 as a candidate gene for holoprosencephaly, and mapping of SIM2 to a region of chromosome 21 important for Down syndrome. Am J Hum Genet 57: 1074–1079

    PubMed  CAS  Google Scholar 

  • Nicham R, Weitzdörfer R, Hauser E, Freidl M, Schubert M, Wurst E, Lubec G, Seidl R (2003) Spectrum of cognitive, behavioural and emotional problems in children and young adults with Down syndrome. J Neural Transm [Suppl 67] (this volume)

    Google Scholar 

  • Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bachl. EMBO J 20: 2835–2843

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, van Deursen J, Hiebert JW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330

    Article  PubMed  CAS  Google Scholar 

  • Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16: 6083–6095

    PubMed  CAS  Google Scholar 

  • Perry C, Eldor A, Soreq H (2002) Runxl/AML1 in leukemia: disrupted association with diverse protein partners. Leuk Res 26: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Perry C, Sklan EH, Birikh K, Shapira M, Trejo L, Eldor A, Soreq H (2002) Complex regulation of acetylcholinesterase gene expression in human brain tumors. Oncogene 21: 8428–8441

    Article  PubMed  CAS  Google Scholar 

  • Sawa A (1999) Neuronal cell death in Down’s syndrome. J Neural Transm [Suppl] 57: 87–97

    CAS  Google Scholar 

  • Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35: 821–830

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo MM, Yamamoto M, Igarashi K (2002) Hemoprotein Bachl regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21: 5216–5224

    Article  PubMed  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P (1998) The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology 38: 359–364

    Article  Google Scholar 

  • Trojanowska M (2000) Ets factors and regulation of the extracellular matrix. Oncogene 19: 6464–6471

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Noda M (2000) Identification and expression of a novel 3’-exon of mouse Runxl/ Pebp2 alphaB/Cbfa2/AML1 gene. Biochem Biophys Res Commun 274: 171–176

    Article  PubMed  CAS  Google Scholar 

  • Verger A, Buisine E, Carrere S, Wintjens R, Flourens A, Coll J, Stehelin D, DuterqueCoquillaud M (2000) Identification of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation. J Biol Chem 276: 17181–17189

    Article  Google Scholar 

  • Vialard F, Toyama K, Vernoux S, Carlson EJ, Epstein CJ, Sinet PM, Rahmani Z (2000) Overexpression of mSim2 gene in the zona limitans of the diencephalon of segmental trisomy 16 Ts1Cje fetuses, a mouse model for trisomy 21: a novel whole-mount based RNA hybridization study. Brain Res Dev Brain Res 121: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Westendorf JJ, Hiebert SW (1999) Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukaemia. J Cell Biochem [Suppl] 32: 51–58

    Article  Google Scholar 

  • Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y (2002) Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21: 148–152

    Article  PubMed  CAS  Google Scholar 

  • Yeghiazaryan K, Turhani-Schatzmann D, Labudova O, Schuller E, Olson EN, Cairns N, Lubec G (1999) Downregulation of the transcription factor scleraxis in brain of patients with Down syndrome. J Neural Transm [Suppl] 57: 305–314

    CAS  Google Scholar 

  • Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES (1997) Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene 14: 1259–1268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Shim, K.S., Ferrando-Miguel, R., Lubec, G. (2003). Aberrant protein expression of transcription factors BACH1 and ERG, both encoded on chromosome 21, in brains of patients with Down syndrome and Alzheimer’s disease. In: Lubec, G. (eds) Advances in Down Syndrome Research. Journal of Neural Transmission Supplement 67, vol 67. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6721-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6721-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40776-9

  • Online ISBN: 978-3-7091-6721-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics