Skip to main content

Physical Aspects of Vibrational Communication

  • Chapter
  • First Online:

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Thirty years ago, we found that insect vibrational songs may travel as bending waves through the stems of various plants. It was already known that other kinds of waves were involved when ants or scorpions detect vibrations through soil or sand, and we anticipated that several other kinds of waves would be involved in different substrates. This review summarizes the progress made since our study and points out some problems that need scrutiny: the energetic costs of communicating through different substrates, how vibrations propagate in plants and soils, discrimination between attenuations due to the substrate and those due to geometric spreading, and whether we can be sure that we record the kinds of waves sensed by the animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator. I. Signal transmission through the substratum. J Comp Physiol A 166:345–353

    Article  Google Scholar 

  • Albert DG (1993) A comparison between wave propagation in water-saturated and air-saturated porous materials. J Appl Phys 73:28–36

    Article  CAS  Google Scholar 

  • Andreotti B (2004) The song of dunes as a wave-particle mode locking. Phys Rev Lett 93:238001–238004

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark HC (1970) The mechanism and efficiency of sound production in mole crickets. J Exp Biol 52:619–652

    Google Scholar 

  • Bonneau L, Andreotti B, Clément E (2007) Surface elastic waves in granular media under gravity and their relation to booming avalanches. Phys Rev E 75:016602

    Article  CAS  Google Scholar 

  • Bonneau L, Andreotti B, Clément E (2008) Evidence for Rayleigh-Hertz surface waves and shear stiffness anomaly in granular media. Phys Rev Lett 101:118001

    Article  CAS  PubMed  Google Scholar 

  • Brownell P, Farley RD (1979) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol A 131:23–30

    Article  Google Scholar 

  • Carus-Wilson C (1891) The production of musical notes from non-musical sand. Nature 44:322

    Article  Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc R Soc B 274:1087–1092

    Article  PubMed Central  PubMed  Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol 186:695–705

    Article  CAS  Google Scholar 

  • Čokl A, Nardi C, Mauricio J, Bento S, Hirose E, Panizzi AR (2006) Transmission of stridulatory signals of the burrower bugs, Scaptocoris castanea and Scaptocoris carvalhoi (Heteroptera: Cydnidae) through the soil and soybean. Physiol Entomol 31:371–381

    Article  Google Scholar 

  • Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, Berlin

    Book  Google Scholar 

  • Eberhard MJB, Lang D, Metcher B, Pass MD, Picker MD, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthropod Struct Dev 39:230–241

    Article  CAS  PubMed  Google Scholar 

  • Elias DO, Mason AC, Hebets EA (2010) A signal-substrate match in the substrate-borne component of a multimodal courtship display. Curr Zool 56:370–378

    Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PloS ONE 6(5):e19692. doi:10.1371/journal.pone.0019692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahy F (2001) Foundations of engineering acoustics. Academic Press, Amsterdam

    Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževic A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Article  Google Scholar 

  • Gusev VE, Aleshin V, Tournat V (2006) Acoustic waves in an elastic channel near the free surface of granular media. Phys Rev Lett 96:214301

    Article  CAS  PubMed  Google Scholar 

  • Henry CH (2006) Acoustic communication in neuropterid insects. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication—physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 153–166

    Google Scholar 

  • Hertz H (1882) Ueber die Berührung fester elastischer Körper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Hetherington TE (1989) Use of vibratory cues for detection of insect prey by the sandswimming lizard Scincus scincus. Anim Behav 37:290–297

    Article  Google Scholar 

  • Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Ent Zool 9:196–198

    Google Scholar 

  • Jaeger HM, Nagel SR (1977) Dynamics of granular material. Amer Sci 85:540–545

    Google Scholar 

  • Mac Nally R, Young D (1981) Song energetics of the bladder cicada, Cystosoma saundersii. J Exp Biol 90:185–196

    Google Scholar 

  • Magal C, Schöller M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412–2418

    Article  CAS  PubMed  Google Scholar 

  • Markl H (1968) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. ii. Erzeugung und Eigenschaften der Signale. Z Vergl Physiol 60:103–150

    Article  Google Scholar 

  • McNett GD, Miles RN, Homentcovschi D, Cocroft RB (2006) A method for two-dimensional characterizations of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Article  Google Scholar 

  • Michelsen A (1971) Physiology of the locust ear. Z Vergl Physiol 71:49–128

    Article  Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Michelsen A, Kirchner WH, Andersen BB, Lindauer M (1986) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J Comp Physiol A 158:605–611

    Article  Google Scholar 

  • Michelsen A, Elsner N (1999) Sound emission and the acoustic far field of a singing acridid grasshopper (Omocestus viridulus). J Exp Biol 202:1571–1577

    PubMed  Google Scholar 

  • Michelsen A, Fonseca P (2000) Spherical sound radiation patterns of singing grass cicadas, Tympanastalna gastrica. J Comp Physiol A 186:163–168

    Article  CAS  PubMed  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Römer H, Lang A, Hartbauer M (2010) The signaller’s dilemma: a cost-benefit analysis of public and private communication. PLoS ONE 5:e13325

    Article  PubMed Central  PubMed  Google Scholar 

  • Serridge M, Licht TR (1987) Piezoelectric accelerometer and vibration preamplifier handbook. Brüel & Kjaer

    Google Scholar 

  • Storm J, Kilpinen O (1998) Modelling the subgenual organ of the honeybee, Apis mellifera. Biol Cybern 78:175–182

    Article  Google Scholar 

  • Stürzl W, Kempter R, van Hemmen JL (2000) Theory of arachnid prey localization. Phys Rev Lett 84:5668–5671

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to my colleague Ole Næsbye Larsen and to the editors of the book for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Michelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michelsen, A. (2014). Physical Aspects of Vibrational Communication. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_11

Download citation

Publish with us

Policies and ethics