Skip to main content

Abstract

Polyhedral combinatorics deals with the application of various aspects of the theory of polyhedra and linear systems to combinatorics. Over the past thirty years a great many researchers have shown how a large number of polyhedral concepts and results have elegant combinatorial consequences. Here, however, we concentrate our attention on developments over the last ten years.

We survey the relationship between linear systems which define a polyhedron and combinatorial min-max theorems obtained via linear programming duality. We discuss two methods of improving these theorems, first by reducing the number of dual variables (facet characterizations) and second, by requiring that dual variables take on integer values (total unimodularity and total dual integrality).

One consequence of the ellipsoid algorithm for linear programming has been to show the equivalence of optimization and separation (determining whether or not a given point belongs to a polyhedron, and if not, finding a separating hyperplane). We discuss the theoretical importance of this as well as several instances where in this approach was used to solve successfully “real world” optimization problems (before the development of the ellipsoid method).

Finally, we briefly discuss the concepts of adjacency and dimension, both of which recently have been shown to have interesting combinatorial consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bachem and M. Grötschel, “New aspects of polyhedral theory”, in B. Korte (ed.) Modern Applied Mathematics - Optimization and Operations Research, North Holland (1982) 51–106. (1979) A. Bachem and R. Kannan, “Applications of polynomial Smith normal form calculations” in L. Collatz et al. (eds.) Numerische Methoden bei graphentheoretischen und kombinatorischen Problemen, Band 2. Birkhäuser Verlag Basel (1979) 195–215.

    Google Scholar 

  2. A. Bachem and R. von Randow, “Integer theorems of Farkas lemma type”, Operations Verfahren Vol. 32 (1979) 19–28.

    MATH  Google Scholar 

  3. E. Balas and N. Christofides, “A restricted Lagrangian approach to the travelling salesman problem”, Mathematical Programming 21 (1981) 19–46.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Balas and M. Padberg, “On the set covering problem”, Operations Research 20 (1972) 1152–1161.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Balinski, “Establishing the matching polytope”, Journal of Combinatorial Theory B13 (1972) 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Berge, “Sur le couplage maximum d’un graphe”, C. R. Académie des Sciences, Paris 247 (1958) 258–259.

    MathSciNet  MATH  Google Scholar 

  7. G. Birkhoff, “Observaciones sobre el algebra lineal”, Rev. Univ. Nac. Turcuman (Ser. A) 5 (1946) 147–148.

    Google Scholar 

  8. R. Chandresekaran, “Polynomial algorithms for totally dual integral systems and extensions”, in P. Hansen (ed.) Studies on Graphs and Discrete Programming, Annals of Discrete Math. 11 (1981) 39–51.

    Chapter  Google Scholar 

  9. V. Chvâtal, “Edmonds polytopes and weakly hamiltonian graphs”, Mathematical Programming 5 (1973) 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Chvátal, “On certain polytopes associated with graphs”, Journal of Combinatorial Theory B18 (1975) 138–154.

    Article  MATH  Google Scholar 

  11. W. Cook, “A minimal totally dual integral defining system for the b-matching polyhedron”, Research report CORR 81-15, University of Waterloo (1981), to appear in SIAM Journal on Algebraic and Discrete Methods.

    Google Scholar 

  12. W. Cook, “Operations that preserve total dual integrality”, Research report CORR 82–34, University of Waterloo (1982), to appear in Operations Research Letters.

    Google Scholar 

  13. G. Cornuéjols and W. R. Pulleyblank, “The travelling salesman polytope and {0, 2}-matching”, Annals of Discrete Mathematics 16 (1982) 27–55.

    Google Scholar 

  14. H. P. Crowder and M. W. Padberg, “Solving large scale symmetric travelling salesman problems to optimality”, Management Science 26 (1980) 495–509.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. H. Cunningham, “Theoretical properties of the network simplex method”, Mathematics of Operations Research 4 (1979) 196–208.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. H. Cunningham, “Testing membership in matroid polyhedra”, Research Report WP81207-OR, Inst, für Operations Research, Universität Bonn.

    Google Scholar 

  17. W. H. Cunningham and A. B. Marsh III, “A primal algorithm for optimum matching”, Mathematical Programming Study 8 (1978) 50–72.

    MathSciNet  Google Scholar 

  18. G. B. Dantzig, D. R. Fulkerson and S. M. Johnson, “Solution of a large-scale travelling salesman problem”, Operations Research 2 (1954) 393–410.

    Article  MathSciNet  Google Scholar 

  19. J. Edmonds, “Paths, trees and flowers”, Canadian Journal of Mathematics 17 (1965) 449–469.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Edmonds, “Maximum matching and a polyhedron with 0-1 vertices”, Journal of Research of the National Bureau of Standards 69 B (1965) 125–130.

    Google Scholar 

  21. J. Edmonds, “Optimum branchings”, in G. B. Dantzig and P. Veinott (eds.) Mathematics of the Decision Sciences, AMS (1968) 346–361, reprinted from Journal of Research of the National Bureau of Standards 71 B (1967) 233–240.

    Google Scholar 

  22. J. Edmonds, “Matroids and the greedy algorithm”, Mathematical Programming 1 (1971) 127–136.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Edmonds, “Matroid intersection”, Annals of Discrete Mathematics 4 (1979) 39–49.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Edmonds and R. Giles, “A min-max relation for submodular functions on graphs”, Annals of Discrete Mathematics 1 (1977) 185–204.

    Article  MathSciNet  Google Scholar 

  25. J. Edmonds and R. Gilles, “Total integrality of linear inequality systems”, Proceedings of Silver Jubilee Conference on Combinatorics, University of Waterloo (1982).

    Google Scholar 

  26. J. Edmonds and E. L. Johnson, “Matching: a well-solved class of integer linear programs” in R. K. Guy et al. (eds.) Combinatorial Structures and their Applications, Gordon and Breach, New York (1970), 89–92.

    Google Scholar 

  27. J. Edmonds, L. Loväsz and W. R. Pulleyblank, “Brick decompositions and the matching rank of graphs”, Research Report CORR 82–17, University of Waterloo (1982) to appear in Combinatorica.

    Google Scholar 

  28. P. Elias, A. Feinstein and C. E. Shannon, “A note on the maximum flow through a network”, IRE Transactions on Information Theory IT2 (1956) 117–119.

    Google Scholar 

  29. L. R. Ford and D. R. Fulkerson, “Maximum flow through a network”, Canadian Journal of Mathematics 8 (1956) 399–404.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. R. Fulkerson, “Blocking and anti-blocking pairs of polyhedra”, Mathematical Programming 1 (1971) 168–194.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Gale, “Optimal assignments in an ordered set: an application of matroid theory”, Journal of Combinatorial Theory 4 (1968) 176–180.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-Completeness, W. H. Freeman & Co., San Francisco (1979).

    Google Scholar 

  33. R. Giles, Submodular functions, graphs and integer polyhedra, Ph.D. Thesis, University of Waterloo (1975).

    Google Scholar 

  34. R. Giles, “Facets and other faces of branching polyhedra”, Colloq. Math. Soc. János Bolyai 18 Combinatorics (1976) 401–418.

    Google Scholar 

  35. R. Giles, “Optimum matching forests I: Special weights”, Mathematical Programming 22 (1982) 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Giles, “Optimum matching forests II: General weights”, Mathematical Programming 22 (1982) 12–38.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Giles, “Optimum matching forests III: Facets of matching forest polyhedra”, Mathematical Programming 22 (1982) 39–51.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Giles and W. R. Pulleyblank, “Total dual integrality and integer polyhedra”, Linear Algebra and Its Applications 25 (1979) 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Giles and L. Trotter, “On stable set polyhedron for £u-free graphs”, Journal of Combinatorial Theory B31 (1981) 313–326.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. J. Goldman, “Resolution and separation theorems for polyhedral convex sets”, in H. W. Kuhn and A. W. Tucker eds., Linear Inequalities and Related Systems, Annals of Mathematics Study 38 (1956) 41 - 51.

    Google Scholar 

  41. R. E. Gomory and T. C. Hu, “Multiterminal network flows”, Journal of S.I.A.M. 9 (1961) 551 - 570.

    MathSciNet  MATH  Google Scholar 

  42. J. J. Green-Krotki, Matching polyhedra, M.Sc. Thesis, Carleton University (1980).

    Google Scholar 

  43. M. Grötschel, “Polyedrische Charakterisierungen kombinatorischer Optimierung sprobleme”, Dissertation, Universität Bonn ( 1977 ), Verlag A. Hain, Meisenheim (1977).

    Google Scholar 

  44. M. Grötschel, “On the monotone symmetric travelling salesman problem: hypohamiltonian/hypotraceable graphs and facets”, Mathematics of Operations Research 5 (1980) 285 - 292.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Grötschel, On the symmetric travelling salesman problem: solution of a 120 city problem, Mathematical Programming Study 12 (1980) 61–77.

    Google Scholar 

  46. M. Grötschel, L. Loväsz, A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica 1 (1981) 70–89.

    Article  Google Scholar 

  47. M. Grötschel and M. Padberg, “On the symmetric travelling salesman problem I: inequalities”, Mathematical Programming 16 (1979) 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Grötschel and M. Padberg, “On the symmetric travelling salesman problem II: lifting theorems and facets”, Mathematical Programming 16 (1979) 281– 302.

    Google Scholar 

  49. to appear in E. Lawler, J. Lenstra, A. Rinnooy Kan (eds.) The Travelling Salesman Problem, Wiley (1983).

    Google Scholar 

  50. to appear in E. Lawler, J. Lenstra, A. Rinnooy Kan (eds.) The Travelling Salesman Problem, Wiley (1983).

    Google Scholar 

  51. M. Grötschel and W. R. Pulleyblank, “Clique tree inequalities and the travelling salesman problem”, Research Report 81196-OR, Institut für Operations Research, Universität Bonn (1981).

    Google Scholar 

  52. P. Hall, “On representations of subsets”, Journal of the London Mathematical Society 10 (1935) 26–30.

    Article  Google Scholar 

  53. D. Hausmann, Adjacency on Polytopes in Combinatorial Optimization, Anton Hain, Meisenheim (1980).

    MATH  Google Scholar 

  54. D. Hausmann and B. Korte, “Colouring criteria for adjacency on 0-1 polyhe- dra”, Mathematical Programming Study 8 (1978) 106–127.

    MathSciNet  Google Scholar 

  55. A. Hoffman, “A generalization of max flow-min cut”, Mathematical Programming 6 (1974) 352–359.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Hoffman, “Ordered sets and linear programming”, in I. Rival (ed.), Ordered Sets, D. Reidel, Dordrecht, Holland (1982) 619 - 654.

    Google Scholar 

  57. A. Hoffman and J. Kruskal, “Integral boundary points of convex polyhedra”, in H. Kuhn and A. Tucker (eds.), Linear Inequalities and Related Systems, Annals of Mathematics Studies 38 (1956) 233 - 246.

    Google Scholar 

  58. S. Hong, A linear programming approach for the travelling salesman problem, Ph. D. Thesis, Johns Hopkins University (1972).

    Google Scholar 

  59. T. C. Hu, Integer Programming and Network Flows, Addison Wesley, Reading (1969).

    MATH  Google Scholar 

  60. Y. Ikura and G. Nemhauser, “Simplex pivots on the set packing polytope”, Tech. Report 513, S.O.R.I.E., Cornell University (1981).

    Google Scholar 

  61. E. Johnson, Programming in networks and graphs, Ph. D. thesis, Operations Research Center, University of California Berkley (1965).

    Google Scholar 

  62. R. Karp, “Reducibility among combinatorial problems”, in R. Miller and J. Thatcher (eds.) Complexity of Computer Computations, Plenum Press, New York (1972) 85–103.

    Google Scholar 

  63. R. Karp and C. Papadimitriou, “On linear characterizations of combinatorial optimization problems”, Proceedings of the Twenty-first Annual Symposium on the Foundations of Computer Science, IEEE (1980), 1–9.

    Google Scholar 

  64. D. König, “Graphs and matrices” (Hungarian) Mat. Fiz. Lapok 38 (1931) 116– 119.

    Google Scholar 

  65. L. Kronecker, “Näherungsweise ganzzahlige Auflösung linearer Gleichungen” in K. Hensel (ed.) Leopold Kroneckers Werke Band III, Teubner Leipzig (1899) 47–110.

    Google Scholar 

  66. E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt Rinehart and Winston, New York (1976).

    MATH  Google Scholar 

  67. A. Lehman, “On the width-length inequality”, Mathematical Programming 17 (1979) 403–417.

    Article  MathSciNet  MATH  Google Scholar 

  68. S. Lin and B. Kernighan, “An effective heuristic algorithm for the travelling- salesman problem”, Operations Research 21 (1973) 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  69. L. Lovász, “Graph theory and integer programming”, Annals of Discrete Mathematics 4 (1979) 141–158.

    Article  MathSciNet  MATH  Google Scholar 

  70. L. Lovász and M. Plummer, “On bicritical graphs”, in A. Hajnal et al. (eds.) Infinite and Finite Sets (Colloqu. Math. Soc. J. Bolyai 10 (1975) 1051–1079.

    Google Scholar 

  71. J. Maurras, Polytopes á sommets dans {0, l}n, Dissertation, Univ. Paris V II (1976).

    Google Scholar 

  72. G. Minty, “On maximal independent sets of vertices in claw-free graphs”, Journal of Combinatorial Theory B (1980) 284–304.

    Google Scholar 

  73. T. S. Motzkin, “Beiträge zur Theorie der linearen Ungleichungen”, Dissertation, Basel (1933) Jerusalem (1936).

    Google Scholar 

  74. D. Naddef, “Rank of maximum matchings in a graph”, Mathematical Programming 22 (1982) 52–70.

    Article  MathSciNet  MATH  Google Scholar 

  75. D. Naddef and W. R. Pulleyblank, “Hamiltonicity and combinatorial polyhedra”, Journal of Combinatorial Theory B (1981) 297–312.

    Google Scholar 

  76. J. von Neumann, “A certain zero-sum two person game equivalent to the optimum assignment problem”, in A. Tucker and H. Kuhn (eds.), Contributions to the Theory of Games II, Annals of Mathematics Study, 38, Princeton University Press (1953) 5–12.

    Google Scholar 

  77. M. Padberg, “Characterizations of totally unimodular, balanced and perfect matrices”, in B. Roy (ed.) Combinatorial Programming: Methods and Applications, Reidel, Boston (1975) 275–284.

    Google Scholar 

  78. M. Padberg and S. Hong, “On the symmetric travelling salesman problem: a computational study”, Mathematical Programming Study 12 (1980) 78–107.

    MathSciNet  MATH  Google Scholar 

  79. M. Padberg and M. R. Rao, “The travelling salesman problem and a class of polyhedra of diameter two”, Mathematical Programming 1 (1974) 32–45.

    Article  MathSciNet  Google Scholar 

  80. M. Padberg and M. R. Rao, “On the Russian method for linear inequalities III: Bounded integer programs”, Research Report, Inria, Paris (1981) to appear in Mathematical Programming Studies.

    Google Scholar 

  81. M. Padberg and M. R. Rao, “Odd minimum cuts and b-matching”, Mathematics of Operations Research 1 (1982) 67–80.

    Article  MathSciNet  Google Scholar 

  82. C. Papadimitriou, “The adjacency relation on the travelling salesman polytope is NP-complete”, Mathematical Programming 14 (1978) 312–324.

    Article  MathSciNet  MATH  Google Scholar 

  83. C. Papadimitiou, “Polytopes and complexity”, Proceedings of the Silver Jubilee Conference on Combinatorics, University of Waterloo (1982).

    Google Scholar 

  84. W. R. Pulleyblank, Faces of Matching Polyhedra, Ph.D. Thesis, University of Waterloo (1973).

    Google Scholar 

  85. W. R. Pulleyblank and J. Edmonds, “Facets of 1-matching polyhedra” in C. Berge and D. Ray-Chaudhuri (eds.), Hypergraph Seminar, Springer-Verlag, Berlin (1974) 214–242.

    Chapter  Google Scholar 

  86. W. R. Pulleyblank, “Dual integrality in b-matching problems”, Mathematical Programming Study 12 (1980) 176–196.

    MathSciNet  MATH  Google Scholar 

  87. W. R. Pulleyblank, “Total dual integrality and b-matchings”, Operations Research Letters 1 (1981) 28–30.

    Article  MathSciNet  MATH  Google Scholar 

  88. R. Rado, “Theorems on linear combinatorial topology and general measure”, Annals of Mathematics, 44 (1943) 228–270.

    Article  MathSciNet  MATH  Google Scholar 

  89. R. Rado, “Note on independence functions”, Proceedings of the London Mathematical Society 1 (1957) 300–320.

    Article  MathSciNet  Google Scholar 

  90. T. Rockafellar, Convex Analysis, Princeton University Press (1970).

    Google Scholar 

  91. N. Sbihi, Etude des Stables dans les Graphes sans Etoile, Doctoral disseration, University of Grenoble (1978).

    Google Scholar 

  92. N. Sbihi, “Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile”, Discrete Mathematics 29 (1980) 53–76.

    Article  MathSciNet  MATH  Google Scholar 

  93. A. Schrijver, “Short proofs on the matching polytope”, Rapport AE17/81, Inst. Act. & Econ, Univ. van Amsterdam (1981), to appear in Journal of Combinatorial Theory B.

    Google Scholar 

  94. A. Schrijver, “Theory of Integer Linear Programming”, preprint.

    Google Scholar 

  95. A. Schrijver, “On total dual integrality”, Linear Algebra and its Applications 38 (1981) 27 - 32.

    Article  MathSciNet  MATH  Google Scholar 

  96. A. Schrijver, “Min-max Results in Combinatorial Optimization”, this volume.

    Google Scholar 

  97. P. Seymour, “On multi-colourings of cubic graphs and conjectures of Fulker- son and Tutte”, Proceedings of the London Mathematical Society 38 (1979) 423- 460.

    Google Scholar 

  98. P. D. Seymour, “Decomposition of regular matroids”, Journal of Combinatorial Theory B (1980) 305 - 359.

    Google Scholar 

  99. J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions, Springer, Berlin (1970).

    MATH  Google Scholar 

  100. V. Trubin, “On a method of solution of integer linear programming problems of a special kind”, Soviet Mathematics Doklody 10 (1969) 1544 - 1546.

    MATH  Google Scholar 

  101. W. T. Tutte, “The factors of graphs”, Canadian Journal of Mathematics 4 (1952) 314 - 328.

    Article  MathSciNet  MATH  Google Scholar 

  102. W. T. Tutte, “Lectures on matroids”, Journal of Research of the National Bureau of Standards 69 B, 1–47.

    Google Scholar 

  103. B. L. van der Waerden, Moderne Algebra (2nd ed.) Springer, Berlin (1937).

    Google Scholar 

  104. D. Welsh, “Kruskal’s theorem for matroids”, Proceedings of the Cambridge Philosophical Society 64 (1968) 3–4.

    Article  MathSciNet  MATH  Google Scholar 

  105. D. Welsh, Matroid Theory, Academic Press, London (1976).

    MATH  Google Scholar 

  106. H. Weyl, “Elementare Theorie der konvexen Polyeder”, Commentarii Mathematici Helvetici 1 (1935) 290–306.

    MathSciNet  Google Scholar 

  107. H. Whitney, “On the abstract properties of linear dependence”, American Journal of Mathematics 57 (1935) 509–533.\

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pulleyblank, W.R. (1983). Polyhedral Combinatorics. In: Bachem, A., Korte, B., Grötschel, M. (eds) Mathematical Programming The State of the Art. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68874-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68874-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68876-8

  • Online ISBN: 978-3-642-68874-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics