Skip to main content

Approximate Čech Complex in Low and High Dimensions

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

Čech complexes reveal valuable topological information about point sets at a certain scale in arbitrary dimensions, but the sheer size of these complexes limits their practical impact. While recent work introduced approximation techniques for filtrations of (Vietoris-)Rips complexes, a coarser version of Čech complexes, we propose the approximation of Čech filtrations directly.

For fixed dimensional point set S, we present an approximation of the Čech filtration of S by a sequence of complexes of size linear in the number of points. We generalize well-separated pair decompositions (WSPD) to well-separated simplicial decomposition (WSSD) in which every simplex defined on S is covered by some element of WSSD. We give an efficient algorithm to compute a linear-sized WSSD in fixed dimensional spaces. Using a WSSD, we then present a linear-sized approximation of the filtration of Čech complex of S.

We also present a generalization of the known fact that the Rips complex approximates the Čech complex by a factor of \(\sqrt{2}\). We define a class of complexes that interpolate between Čech and Rips complexes and that, given any parameter ε > 0, approximate the Čech complex by a factor (1 + ε). Our complex can be represented by O(n ⌈1/2ε) simplices, up to purely combinatorial operations, without any hidden dependence on the ambient dimension of the point set. Our results are based on an interesting link between Čech complex and coresets for minimum enclosing ball of high-dimensional point sets. As a consequence of our analysis, we show improved bounds on coresets that approximate the radius of the minimum enclosing ball.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attali, D., Lieutier, A., Salinas, D.: Efficient data structures for representing and simplifying simplicial complexes in high dimensions. Int. J. of Computational Geometry & Applications 22, 279–303 (2012)

    Article  MathSciNet  Google Scholar 

  2. Boissonnat, J.-D., Guibas, L., Oudot, S.: Manifold reconstruction in arbitrary dimensions using witness complexes. Discr. Comput. Geom. 42, 37–70 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bădoiu, M., Clarkson, K.: Optimal core-sets for balls. Computational Geometry: Theory and Applications 40, 14–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Callahan, P., Kosaraju, S.: A decomposition of multidimensional point sets with applications to k-nearest neighbors and n-body potential fields. J. of the ACM 42, 67–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlsson, G., de Silva, V.: Zigzag persistence. Foundations of Computational Mathematics 10, 367–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., Oudot, S.: Proximity of persistence modules and their diagrams. In: Proc. 25th ACM Symp. on Comp. Geom., pp. 237–246 (2009)

    Google Scholar 

  7. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Symp. on Point-Based Graphics, pp. 157–166 (2004)

    Google Scholar 

  8. Dey, T., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. CoRR, abs/1208.5018 (2012)

    Google Scholar 

  9. Dey, T., Fan, F., Wang, Y.: Graph induced complex on point data. In: Proc. 29th ACM Symp. on Comp. Geom. (2013)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Computational Topology, An Introduction. American Mathematical Society (2010)

    Google Scholar 

  11. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory IT-29, 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  12. Edelsbrunner, H., Mücke, E.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  13. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society (2011)

    Google Scholar 

  14. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics and their applications. Siam J. on Computing 35, 1148–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henk, M.: A generalization of Jung’s theorem. Geometriae Dedicata 42, 235–240 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kerber, M., Sharathkumar, R.: Approximate cech complexes in low and high dimensions. arxiv:1307.3272 (2013)

    Google Scholar 

  17. Mrozek, M., Pilarczyk, P., Zelazna, N.: Homology algorithm based on acyclic subspace. Computer and Mathematics with Applications 55, 2395–2412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Munkres, J.R.: Elements of algebraic topology. Westview Press (1984)

    Google Scholar 

  19. Oudot, S., Sheehy, D.: Zigzag zoology: Rips zigzags for homology inference. In: Proc. 29th ACM Symp. on Comp. Geom. (2013)

    Google Scholar 

  20. Sheehy, D.: Linear-size approximation to the Vietoris-Rips filtration. In: Proc. 2012 ACM Symp. on Comp. Geom., pp. 239–248 (2012)

    Google Scholar 

  21. Zomorodian, A.: The tidy set: A minimal simplicial set for computing homology of clique complexes. In: Proc. 26th ACM Symp. on Comp. Geom., pp. 257–266 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerber, M., Sharathkumar, R. (2013). Approximate Čech Complex in Low and High Dimensions. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics