Skip to main content

Enumeration of Totally Real Number Fields of Bounded Root Discriminant

  • Conference paper
Algorithmic Number Theory (ANTS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5011))

Included in the following conference series:

Abstract

We enumerate all totally real number fields F with root discriminant δ F  ≤ 14. There are 1229 such fields, each with degree .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, J., Bilbao, M., Peral, J.C.: The trace of totally positive algebraic integers. Math. Comp. 75(253), 385–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belabas, K.: A fast algorithm to compute cubic fields. Math. Comp. 66(219), 1213–1237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhargava, M.: Gauss composition and generalizations. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 1–8. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cohen, H.: Advanced Topics in Computational Number Theory. In: Graduate Texts in Mathematics, vol. 193, Springer, New York (2000)

    Google Scholar 

  5. Cohen, H., Diaz y Diaz, F.: A polynomial reduction algorithm. Sém. Théor. Nombres Bordeaux 3(2), 351–360 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Cohen, H., Diaz y Diaz, F., Olivier, M.: A table of totally complex number fields of small discriminants. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 381–391. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Cohen, H., Diaz y Diaz, F., Olivier, M.: Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 72(242), 941–951 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohn, H., Elkies, N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Conway, J.H.,, Sloane, N.J.A.: Sphere packings, lattices and groups. In: Grund. der Math. Wissenschaften, 3rd edn., vol. 290, Springer, New York (1999)

    Google Scholar 

  10. De Loera, J., Hemmecke, R., Tauzer, J., Yoshia, R.: Effective lattice point counting in rational convex polytopes. J. Symbolic Comput. 38(4), 1273–1302 (2004)

    Article  MathSciNet  Google Scholar 

  11. De Loera, J.: LattE: Lattice point Enumeration (2007), http://www.math.ucdavis.edu/~latte/

  12. Ellenberg, J.S., Venkatesh, A.: The number of extensions of a number field with fixed degree and bounded discriminant. Ann. of Math. 163(2), 723–741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44, 170, 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hajir, F., Maire, C.: Tamely ramified towers and discriminant bounds for number fields. Compositio Math. 128, 35–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajir, F., Maire, C.: Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33, 415–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Number field tables, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/

  17. Klüners, J., Malle, G.: A database for number fields, http://www.math.uni-duesseldorf.de/~klueners/minimum/minimum.html

  18. Klüners, J., Malle, G.: A database for field extensions of the rationals. LMS J. Comput. Math. 4, 82–196 (2001)

    Google Scholar 

  19. Kreuzer, M., Skarke, H.: PALP: A Package for Analyzing Lattice Polytopes (2006), http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html

  20. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Long, D.D., Maclachlan, C., Reid, A.W.: Arithmetic Fuchsian groups of genus zero. Pure Appl. Math. Q. 2, 569–599 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Malle, G.: The totally real primitive number fields of discriminant at most 109. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 114–123. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Martin, J.: Improved bounds for discriminants of number fields (submitted)

    Google Scholar 

  24. Martinet, J.: Petits discriminants des corps de nombres. In: Journées Arithmétiques (Exeter, 1980). London Math. Soc. Lecture Note Ser., vol. 56, pp. 151–193. Cambridge Univ. Press, Cambridge (1982)

    Google Scholar 

  25. Martinet, J.: Tours de corps de classes et estimations de discriminants. Invent. Math. 44, 65–73 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martinet, J.: Methodes geométriques dans la recherche des petitis discriminants. In: Sem. Théor. des Nombres (Paris 1983–84), pp. 147–179. Birkhäuser, Boston (1985)

    Google Scholar 

  27. Odlyzko, A.M.: Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux 2(2), 119–141 (1990)

    MathSciNet  MATH  Google Scholar 

  28. The PARI Group: PARI/GP (version 2.3.2), Bordeaux (2006), http://pari.math.u-bordeaux.fr/ .

  29. Pohst, M.: On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields. J. Number Theory 14, 99–117 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roblot, X.-F.: Totally real fields with small root discriminant, http://math.univ-lyon1.fr/~roblot/tables.html .

  31. Stein, W.: SAGE Mathematics Software (version 2.8.12). The SAGE Group (2007), http://www.sagemath.org/

  32. Smyth, C.J.: The mean values of totally real algebraic integers. Math. Comp. 42, 663–681 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Takeuchi, K.: Totally real algebraic number fields of degree 9 with small discriminant. Saitama Math. J. 17, 63–85 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software 25, 251–276 (1999)

    Article  MATH  Google Scholar 

  35. Voight, J.: Totally real number fields, http://www.cems.uvm.edu/~voight/nf-tables/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred J. van der Poorten Andreas Stein

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Voight, J. (2008). Enumeration of Totally Real Number Fields of Bounded Root Discriminant. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79456-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79455-4

  • Online ISBN: 978-3-540-79456-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics