Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 183))

In this chapter we focus on immunorecognition of RNA by two members of the family of Toll-like receptors (TLRs), TLR7, and TLR8. While any long single-stranded RNA is readily recognized by both TLR7 and TLR8, sequencedependent activation of TLR7 and TLR8 becomes more evident when using short RNA oligonucleotides. RNA oligonucleotides containing sequence motifs for TLR7 and TLR8 are termed is RNA (immunostimulatory RNA). Moreover, short doublestranded RNA oligonucleotides as used for siRNA (short interfering RNA) containing such sequences function primarily as ligands for TLR7 but not TLR8. Even in the presence of appropriate sequence motifs, RNA is not detected by TLR7 and TLR8 when certain chemical modifications are present. Both immunological recognition and ignorance are relevant for the development of RNA-based therapeutics, depending on the clinical setting for which they are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783-801

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738

    Article  CAS  PubMed  Google Scholar 

  • Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H (2003) Cationic liposomemediated gene delivery: Biophysical study and mechanism of internalization. Arch Biochem Biophys 410: 246-253

    Article  PubMed  Google Scholar 

  • Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31: 589-595

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D, Becker Y, Darnell JE (1964) Virus-Specific Double-Stranded Rna in PoliovirusInfected Cells. Science 143: 1034-1036

    Article  CAS  PubMed  Google Scholar 

  • Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7: 49-56

    Article  CAS  PubMed  Google Scholar 

  • Beigelman L, McSwiggen JA, Draper KG, Gonzalez C, Jensen K, Karpeisky AM, Modak AS, Matulic-Adamic J, DiRenzo AB, Haeberli P, et al. (1995) Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem 270: 25702-25708

    Article  CAS  PubMed  Google Scholar 

  • Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115: 3265-3275

    Article  CAS  PubMed  Google Scholar 

  • Bekeredjian-Ding I, Roth SI, Gilles S, Giese T, Ablasser A, Hornung V, Endres S, Hartmann G (2006) T cell-independent, TLR-induced IL-12p70 production in primary human monocytes. J Immunol 176: 7438-7346

    CAS  PubMed  Google Scholar 

  • Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G (2005) Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 174: 4043-4050

    PubMed  Google Scholar 

  • Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochem 42: 7967-7975

    Article  CAS  Google Scholar 

  • Capodici J, Kariko K, Weissman D (2002) Inhibition of HIV-1 infection by small interfering RNAmediated RNA interference. J Immunol 169: 5196-5201

    PubMed  Google Scholar 

  • Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: Flagellin and R-848 up-regulate proliferation and IFNgamma production by memory CD4 + T cells. J Immunol 175: 1551-1557

    CAS  PubMed  Google Scholar 

  • Cavaille J, Bachellerie JP (1998) SnoRNA-guided ribose methylation of rRNA: Structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res 26: 1576-1587

    Article  CAS  PubMed  Google Scholar 

  • Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2 -modified siRNAs reveals TLR-dependent and independent effects. J Mol Bio 365: 90-108

    Article  CAS  Google Scholar 

  • Chiu YL, Rana TM (2003) siRNA function in RNAi: A chemical modification analysis. Rna 9: 1034-1048

    Article  CAS  PubMed  Google Scholar 

  • Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309: 581-585

    Article  CAS  PubMed  Google Scholar 

  • Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31: 2705-2716

    Article  CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529-1531

    Article  CAS  PubMed  Google Scholar 

  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis ESC (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J of Immun 36: 3256-3267

    Article  CAS  Google Scholar 

  • Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3: 318-329

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20: 6877-6888

    Article  CAS  PubMed  Google Scholar 

  • Field AK, Tytell AA, Lampson GP, Hilleman MR (1967) Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci USA 58: 1004-1010

    Article  CAS  PubMed  Google Scholar 

  • Funami K, Matsumoto M, Oshiumi H, Akazawa T, Yamamoto A, Seya T (2004) The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int Immunol 16: 1143-154

    Article  CAS  PubMed  Google Scholar 

  • Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4 + T cell survival. J Immunol 172: 6065-6073

    CAS  PubMed  Google Scholar 

  • Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, Diamond MS, Colonna M (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Nat Acad Sci USA 103: 8459-8464

    Article  CAS  PubMed  Google Scholar 

  • Gorden KK, Qiu X, Battiste JJ, Wightman PP, Vasilakos JP, Alkan SS (2006a) Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 177: 8164-8170

    CAS  Google Scholar 

  • Gorden KK, Qiu XX, Binsfeld CC, Vasilakos JP, Alkan SS (2006b) Cutting edge: Activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J Immunol 177: 6584-6587

    CAS  Google Scholar 

  • Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439: 204-207

    Article  PubMed  Google Scholar 

  • Hartmann G, Krieg AM (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164: 944-953

    CAS  PubMed  Google Scholar 

  • Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM (2000) Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 164: 1617-1624

    CAS  PubMed  Google Scholar 

  • Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22: 1579-1582

    Article  CAS  PubMed  Google Scholar 

  • Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S, Wagner H, Bauer S (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8, and 9 subfamily. Eur J Immunol 33: 2987-2997

    Article  CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526-1529

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745

    Article  CAS  PubMed  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11: 263-270

    Article  CAS  PubMed  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168: 4531-4537

    CAS  PubMed  Google Scholar 

  • Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S, Kaisho T (2006) IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440: 949-953

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. Rna 12: 1197-1205

    Article  CAS  PubMed  Google Scholar 

  • Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13: 494-505

    Article  CAS  PubMed  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457-462

    Article  CAS  PubMed  Google Scholar 

  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499

    Article  CAS  PubMed  Google Scholar 

  • Jurk M, Kritzler A, Schulte B, Tluk S, Schetter C, Krieg AM, Vollmer J (2006) Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. Eur J Immunol 36: 1815-1826

    Article  CAS  PubMed  Google Scholar 

  • Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23: 165-175

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Doerfler W, Cardon LR (1994) Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol 68: 2889-2897

    CAS  PubMed  Google Scholar 

  • Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23: 19-28

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis ESC, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature

    Google Scholar 

  • Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature immunology 5: 1061-1068

    Article  CAS  PubMed  Google Scholar 

  • Kierzek E, Kierzek R (2003) The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res 31: 4472-4480

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20: 709-760

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549

    Article  CAS  PubMed  Google Scholar 

  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5: 190-198

    Article  CAS  PubMed  Google Scholar 

  • Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, Marshak-Rothstein A (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202: 1171-1177

    Article  CAS  PubMed  Google Scholar 

  • Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173: 1179-1183

    CAS  PubMed  Google Scholar 

  • Levin AA (1999) A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1489: 69-84

    CAS  PubMed  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Nat Acad Sci USA 101: 5598-5603

    Article  CAS  PubMed  Google Scholar 

  • Manoharan M (2004) RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8: 570-579

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171: 3154-3162

    CAS  PubMed  Google Scholar 

  • Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber F, Bowie AG, Matikainen S, Paludan SR (2005) Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J Virol 79: 12944-12951

    Article  CAS  PubMed  Google Scholar 

  • Montagnier L, Sanders FK (1963) Replicative form of encephalomyocarditis virus ribonucleic acid. Nature 199: 664-667

    Article  CAS  PubMed  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23: 1002-1007

    Article  CAS  PubMed  Google Scholar 

  • Nishiya T, Kajita E, Miwa S, Defranco AL (2005) TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280: 37107-37117

    Article  CAS  PubMed  Google Scholar 

  • Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G (2006) Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439: 208-211

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIGI-mediated antiviral responses to single-stranded RNA bearing 5 -phosphates. Science 314: 997-1001

    Article  CAS  PubMed  Google Scholar 

  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2 -modified hammerhead ribozymes. Science 253: 314-317

    Article  CAS  PubMed  Google Scholar 

  • Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R (2002) Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol 168: 4951-4959

    CAS  PubMed  Google Scholar 

  • Robbins MA, Li M, Leung I, Li H, Boyer DV, Song Y, Behlke MA, Rossi JJ (2006) Stable expression of shRNAs in human CD34+progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat Biotechnol 24: 566-571

    Article  CAS  PubMed  Google Scholar 

  • Rozenski J, Crain PF, McCloskey JA (1999) The RNA modification database: 1999 update. Nucleic Acids Res 27: 196-197

    Article  CAS  PubMed  Google Scholar 

  • Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34: 2541-2550

    Article  CAS  PubMed  Google Scholar 

  • Scheel B, Braedel S, Probst J, Carralot JP, Wagner H, Schild H, Jung G, Rammensee HG, Pascolo S (2004) Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 34: 537-547

    Article  CAS  PubMed  Google Scholar 

  • Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2 -hydroxyl uridines in immune responses. Eur J Immunol 36: 1222-1230

    Article  CAS  PubMed  Google Scholar 

  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834-839

    Article  CAS  PubMed  Google Scholar 

  • Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23: 709-717

    Article  CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173-178

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama T, Gursel M, Takeshita F, Coban C, Conover J, Kaisho T, Akira S, Klinman DM, Ishii KJ (2005) CpG RNA: Identification of novel single-stranded RNA that stimulates human CD14 + CD11c+monocytes. J Immunol 174: 2273-2279

    CAS  PubMed  Google Scholar 

  • Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 201: 915-923

    Article  CAS  PubMed  Google Scholar 

  • Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K (2000) HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 165: 4710-4717

    CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. Nat Immunol 5: 730-737

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hornung, V., Barchet, W., Schlee, M., Hartmann, G. (2008). RNA Recognition via TLR7 and TLR8. In: Bauer, S., Hartmann, G. (eds) Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72167-3_4

Download citation

Publish with us

Policies and ethics