Skip to main content

TRPP2 Channel Regulation

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

Polycystin-2, or TRPP2 according to the TRP nomenclature, is encoded by PKD2, a gene mutated in patients with autosomal-dominant polycystic kidney disease. Its precise subcellular location and its intracellular trafficking are a matter of intense debate, although a consensus has emerged that it is located in primary cilia, a long-neglected organelle possibly involved in sensory functions. Polycystin-2 has a calculated molecular mass of 110 kDa, and according to structural predictions it contains six membrane-spanning domains and a pore-forming region between the 5th and 6th membrane-spanning domain. This section first introduces the reader to the field of cystic kidney diseases and to the PKD2 gene, before the ion channel properties of polycystin-2 are discussed in great detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews PM, Porter KR (1974) A scanning electron microscopic study of the nephron. Am J Anat 140:81–115

    Article  CAS  PubMed  Google Scholar 

  • Anyatonwu GI, Ehrlich BE (2005) Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 280:29488–29493

    Article  CAS  PubMed  Google Scholar 

  • Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389

    CAS  PubMed  Google Scholar 

  • Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Witzgall R, Ehrlich BE, Somlo S (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J Biol Chem 279:19987–19995

    Article  CAS  PubMed  Google Scholar 

  • Cartwright JHE, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci USA 101:7234–7239

    Article  CAS  PubMed  Google Scholar 

  • Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attié-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983

    CAS  PubMed  Google Scholar 

  • Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium regulated cation channel permeable to calcium ions. Nature 401:383–386

    CAS  PubMed  Google Scholar 

  • Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J (2001) Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun 282:12511256

    Google Scholar 

  • Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742

    CAS  PubMed  Google Scholar 

  • Deltas CC (2001) Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum Mutat 18:13–24

    Article  CAS  PubMed  Google Scholar 

  • European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894

    Article  Google Scholar 

  • Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827

    CAS  PubMed  Google Scholar 

  • Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 97:4017–4022

    Article  CAS  PubMed  Google Scholar 

  • Gallagher AR, Hidaka S, Gretz N, Witzgall R (2002) Molecular basis of autosomal-dominant polycystic kidney disease. Cell Mol Life Sci 59:682–693

    Article  CAS  PubMed  Google Scholar 

  • Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17:2719–2730

    Article  CAS  PubMed  Google Scholar 

  • González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187

    Article  PubMed  Google Scholar 

  • González-Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Moltabetti N, Reisin IL, Arnaout MA, Cantiello HF (2002) Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J Biol Chem 277:24959–24966

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and-2 produces unique cation-permeable currents. Nature 408:990–994

    Article  CAS  PubMed  Google Scholar 

  • Hateboer N, Veldhuisen B, Peters D, Breuning MH, San-Millán JL, Bogdanova N, Coto E, van Dijk MA, Afzal AR, Jeffery S, Saggar-Malik AK, Torra R, Dimitrakov D, Martinez I, de Castro SS, Krawczak M, Ravine D (2000) Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 57:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Mochizuki T, Reynolds DM, Wu G, Cai Y, Somlo S (1997) Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 44:131–136

    Article  CAS  PubMed  Google Scholar 

  • Haycraft CJ, Swoboda P, Taulman PD, Thomas JH, Yoder BK (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128:1493–1505

    CAS  PubMed  Google Scholar 

  • Hidaka S, Könecke V, Osten L, Witzgall R (2004) PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem 279:35009–35016

    Article  CAS  PubMed  Google Scholar 

  • Hooper KM, Unwin RJ, Sutters M (2003) The isolated C-terminus of polycystin-1 promotes increased ATP-stimulated chloride secretion in a collecting duct cell line. Clin Sci 104:217–221

    Article  CAS  PubMed  Google Scholar 

  • Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432

    CAS  PubMed  Google Scholar 

  • Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas g, Walz G (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716

    Article  PubMed  CAS  Google Scholar 

  • Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  CAS  PubMed  Google Scholar 

  • Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13:1153–1160

    CAS  PubMed  Google Scholar 

  • Latta H, Maunsbach AB, Madden SC (1961) Cilia in different segments of the rat nephron. J Biophys Biochem Cytol 11:248–252

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen S, Ora A, Olkkonen VM, Geng L, Zerial M, Somlo S, Lehtonen E (2000) In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2. J Biol Chem 275:32888–32893

    Article  CAS  PubMed  Google Scholar 

  • Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Dai Y, Guo L, Liu Y, Hao C, Wu G, Basora N, Michalak M, Chen XZ (2003a) Polycystin-2 associates with tropomyosin-1, an actin microfilament component. J Mol Biol 325:949–962

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Shen PY, Wu G, Chen XZ (2003b) Polycystin-2 interacts with troponin I, an angiogenesis inhibitor. Biochemistry 42:450–457

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ (2005a) Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 14:1587–1603

    Article  CAS  PubMed  Google Scholar 

  • Li X, Luo Y, Starremans PG, McNamara CA, Pai Y, Zhou J (2005b) Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7:1202–1212

    PubMed  Google Scholar 

  • Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005c) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280:41298–41306

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298

    Article  CAS  PubMed  Google Scholar 

  • Magistroni R, He N, Wang K, Andrew R, Johnson A, Gabow P, Dicks E, Parfrey P, Torra R, San-Millan JL, Coto E, van Dijk M, Breuning M, Peters D, Bogdanova N, Ligabue G, Albertazzi A, Hateboer N, Demetriou K, Pierides A, Deltas C, StGeorge-Hyslop P, Ravine D, Pei Y (2003) Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 14:1164–1174

    Article  PubMed  Google Scholar 

  • Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D’Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25

    CAS  PubMed  Google Scholar 

  • McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJM, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    Article  CAS  PubMed  Google Scholar 

  • Montalbetti N, Li Q, González-Perrett S, Semprine J, Chen XZ, Cantiello HF (2005a) Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast. Pflügers Arch 451:294–303

    Article  CAS  PubMed  Google Scholar 

  • Montalbetti N, Li Q, Timpanaro GA, González-Perrett S, Dai XQ, Chen XZ, Cantiello HF (2005b) Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin. J Physiol 566:309–325

    Article  CAS  PubMed  Google Scholar 

  • Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355

    CAS  PubMed  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AEH, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  • Obermüller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R (1999) The rat Pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277:F914–F925

    PubMed  Google Scholar 

  • Park JH, Li L, Cai Y, Hayashi T, Dong F, Maeda Y, Rubin C, Somlo S, Wu G (2000) Cloning and characterization of the murine Pkd2 promoter. Genomics 66:305–312

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  • Pennekamp P, Bogdanova N, Wilda M, Markoff A, Hameister H, Horst J, Dworniczak B (1998) Characterization of the murine polycystic kidney disease (Pkd2) gene. Mamm Genome 9:749–752

    Article  CAS  PubMed  Google Scholar 

  • Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel protein polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    Article  CAS  PubMed  Google Scholar 

  • Peters DJM, Sandkuijl LA (1992) Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol 97:128–139

    CAS  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  CAS  PubMed  Google Scholar 

  • Ramasubbu K, Gretz N, Bachmann S (1998) Increased epithelial cell proliferation and abnormal extracellular matrix in rat polycystic kidney disease. J Am Soc Nephrol 9:937–945

    CAS  PubMed  Google Scholar 

  • Roscoe JM, Brissenden JE, Williams EA, Chery AL, Silverman M (1993) Autosomal dominant polycystic kidney disease in Toronto. Kidney Int 44:1101–1108

    CAS  PubMed  Google Scholar 

  • Rundle DR, Gorbsky G, Tsiokas L (2004) PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells. Role of mDia1 in PKD2 localization to mitotic spindles. J Biol Chem 279:29728–29739

    Article  CAS  PubMed  Google Scholar 

  • Schwiebert EM, Wallace DP, Braunstein GM, King SR, Peti-Peterdi J, Hanaoka K, Guggino WB, Guay-Woodford LM, Bell PD, Sullivan LP, Grantham JJ, Taylor AL (2002) Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys. Am J Physiol Renal Physiol 282:F763–F775

    CAS  PubMed  Google Scholar 

  • Sweeney WE Jr, Chen Y, Nakanishi K, Frost P, Avner ED (2000) Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 57:33–40

    Article  CAS  PubMed  Google Scholar 

  • Torra R, Badenas C, Darnell A, Nicolau C, Volpini V, Revert L, Estivill X (1996) Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 7:2142–2151

    CAS  PubMed  Google Scholar 

  • Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P, Avner ED (2003) EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 64:1573–1579

    Article  CAS  PubMed  Google Scholar 

  • Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH II (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364

    Article  CAS  PubMed  Google Scholar 

  • Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo-and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970

    Article  CAS  PubMed  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  CAS  PubMed  Google Scholar 

  • Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye Cp, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282:341–350

    Article  CAS  PubMed  Google Scholar 

  • Wheatley DN (1995) Primary cilia in normal and pathological tissues. Pathobiology 63:222–238

    Article  CAS  PubMed  Google Scholar 

  • Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    Article  CAS  PubMed  Google Scholar 

  • Witzgall R (2005a) New developments in the field of cystic kidney diseases. Curr Mol Med 5:455–465

    Article  CAS  PubMed  Google Scholar 

  • Witzgall R (2005b) Polycystin-2—an intracellular or plasma membrane channel? Naunyn Schmiedebergs Arch Pharmacol 371:342–347

    Article  CAS  PubMed  Google Scholar 

  • Wright AF, Teague PW, Pound SE, Pignatelli PM, Macnicol AM, Carothers AD, de Mey RJ, Allan PL, Watson ML (1993) A study of genetic linkage heterogeneity in 35 adult-onset polycystic kidney disease families. Hum Genet 90:569–571

    Article  CAS  PubMed  Google Scholar 

  • Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    Article  CAS  PubMed  Google Scholar 

  • Xu GM, González-Perrett S, Essafi M, Timpanaro GA, Montalbetti N, Arnaout MA, Cantiello HF (2003) Polycystin-1 activates and stabilizes the polycystin-2 channel. J Biol Chem 278:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witzgall, R. (2007). TRPP2 Channel Regulation. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_22

Download citation

Publish with us

Policies and ethics