Skip to main content

“Pyruvate Carboxylase, Structure and Function”

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Pyruvate carboxylase is a metabolic enzyme that fuels the tricarboxylic acid cycle with one of its intermediates and also participates in the first step of gluconeogenesis. This large enzyme is multifunctional, and each subunit contains two active sites that catalyze two consecutive reactions that lead to the carboxylation of pyruvate into oxaloacetate, and a binding site for acetyl-CoA, an allosteric regulator of the enzyme. Pyruvate carboxylase oligomers arrange in tetramers and covalently attached biotins mediate the transfer of carboxyl groups between distant active sites. In this chapter, some of the recent findings on pyruvate carboxylase functioning are presented, with special focus on the structural studies of the full length enzyme. The emerging picture reveals large movements of domains that even change the overall quaternary organization of pyruvate carboxylase tetramers during catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adina-Zada A, Jitrapakdee S, Surinya KH, McIldowie MJ, Piggott MJ, Cleland WW, Wallace JC, Attwood PV (2008) Insights into the mechanism and regulation of pyruvate carboxylase by characterisation of a biotin-deficient mutant of the Bacillus thermodenitrificans enzyme. Int J Biochem Cell Biol 40(9):1743–1752. doi:10.1016/j.biocel.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Adina-Zada A, Sereeruk C, Jitrapakdee S, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV (2012a) Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase. Biochemistry 51(41):8208–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adina-Zada A, Zeczycki TN, Attwood PV (2012b) Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. Arch Biochem Biophys 519(2):118–130. doi:10.1016/j.abb.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  • Adina-Zada A, Zeczycki TN, St Maurice M, Jitrapakdee S, Cleland WW, Attwood PV (2012c) Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA. Biochem Soc Trans 40(3):567–572. doi:10.1042/BST20120041

    Article  CAS  PubMed  Google Scholar 

  • Ashman LK, Keech DB (1975) Sheep kidney pyruvate carboxylase. Studies on the coupling of adenosine triphosphate hydrolysis and CO2 fixation. J Biol Chem 250(1):14–21

    CAS  PubMed  Google Scholar 

  • Attwood PV, Graneri BD (1992) Bicarbonate-dependent ATP cleavage catalysed by pyruvate carboxylase in the absence of pyruvate. Biochem J 287(Pt 3):1011–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwood PV, Wallace JC (2002) Chemical and catalytic mechanisms of carboxyl transfer reactions in biotin-dependent enzymes. Acc Chem Res 35(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, Pagliassotti MJ (2001) Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am J Phys Regul Integr Comp Phys 281(2):R427–R433

    CAS  Google Scholar 

  • Cao Z, Zhou Y, Zhu S, Feng J, Chen X, Liu S, Peng N, Yang X, Xu G, Zhu Y (2016) Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome. Sci Report 6:22002. doi:10.1038/srep22002

    Article  CAS  Google Scholar 

  • Carbone MA, MacKay N, Ling M, Cole DE, Douglas C, Rigat B, Feigenbaum A, Clarke JT, Haworth JC, Greenberg CR, Seargeant L, Robinson BH (1998) Amerindian pyruvate carboxylase deficiency is associated with two distinct missense mutations. Am J Hum Genet 62(6):1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, Stevenson D, Tumanov S, Bulusu V, Kamphorst JJ, Vazquez A, Fleming S, Schiavi F, Kalna G, Blyth K, Strathdee D, Gottlieb E (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol 17(10):1317–1326. doi:10.1038/ncb3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou CY, Yu LP, Tong L (2009) Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J Biol Chem 284(17):11690–11697. doi:10.1074/jbc.M805783200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Queiroz MS, Waldrop GL (2007) Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity. J Theor Biol 246(1):167–175

    Article  PubMed  Google Scholar 

  • DeVivo DC, Haymond MW, Leckie MP, Bussman YL, McDougal DB Jr, Pagliara AS (1977) The clinical and biochemical implications of pyruvate carboxylase deficiency. J Clin Endocrinol Metab 45(6):1281–1296. doi:10.1210/jcem-45-6-1281

    Article  CAS  PubMed  Google Scholar 

  • Duangpan S, Jitrapakdee S, Adina-Zada A, Byrne L, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV (2010) Probing the catalytic roles of Arg548 and Gln552 in the carboxyl transferase domain of the Rhizobium etli pyruvate carboxylase by site-directed mutagenesis. Biochemistry 49(15):3296–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugal BS (1973) Apparent co-operative effect of acetyl-CoA on pigeon liver pyruvate carboxylase. FEBS Lett 30(2):181–184

    Article  CAS  PubMed  Google Scholar 

  • Easterbrook-Smith SB, Wallace JC, Keech DB (1978) A reappraisal of the reaction pathway of pyruvate carboxylase. Biochem J 169(1):225–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easterbrook-Smith SB, Campbell AJ, Keech DB, Wallace JC (1979) The atypical velocity response by pyruvate carboxylase to increasing concentrations of acetyl-coenzyme A. Biochem J 179(3):497–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Chou CY, Tong L, Xiang S (2012) Crystal structure of urea carboxylase provides insights into the carboxyltransfer reaction. J Biol Chem 287(12):9389–9398. doi:10.1074/jbc.M111.319475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39(5–6):185–191. doi:10.1016/j.bioorg.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman AD, Kohn L (1964) Pyruvate metabolism and control: factors affecting pyruvic carboxylase activity. Science (New York, NY) 145(3627):58–60

    Article  CAS  Google Scholar 

  • Galperin MY, Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6(12):2639–2643. doi:10.1002/pro.5560061218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69(6):2312–2325

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cazorla A, Rabier D, Touati G, Chadefaux-Vekemans B, Marsac C, de Lonlay P, Saudubray JM (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59(1):121–127. doi:10.1002/ana.20709

    Article  PubMed  Google Scholar 

  • Goodall GJ, Baldwin GS, Wallace JC, Keech DB (1981) Factors that influence the translocation of the N-carboxybiotin moiety between the two sub-sites of pyruvate carboxylase. Biochem J 199(3):603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goss JA, Cohen ND, Utter MF (1981) Characterization of the subunit structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem 256(22):11819–11825

    CAS  PubMed  Google Scholar 

  • Gray LR, Tompkins SC, Taylor EB (2014) Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 71(14):2577–2604. doi:10.1007/s00018-013-1539-2

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Sadre-Bazzaz K, Shen Y, Deng B, Zhou ZH, Tong L (2010) Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase. Nature 466(7309):1001–1005. doi:10.1038/nature09302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CS, Ge P, Zhou ZH, Tong L (2012) An unanticipated architecture of the 750-kDa alpha6beta6 holoenzyme of 3-methylcrotonyl-CoA carboxylase. Nature 481(7380):219–223. doi:10.1038/nature10691

    Article  CAS  Google Scholar 

  • Janiyani K, Bordelon T, Waldrop GL, Cronan JE Jr (2001) Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer. J Biol Chem 276(32):29864–29870. doi:10.1074/jbc.M104102200

    Article  CAS  PubMed  Google Scholar 

  • Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem J 413(3):369–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurado AR, Huang CS, Zhang X, Zhou ZH, Tong L (2015) Structure and substrate selectivity of the 750-kDa alpha6beta6 holoenzyme of geranyl-CoA carboxylase. Nat Commun 6:8986. doi:10.1038/ncomms9986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaziro Y, Hass LF, Boyer PD, Ochoa S (1962) Mechanism of the propionyl carboxylase reaction. II. Isotopic exchange and tracer experiments. J Biol Chem 237:1460–1468

    CAS  PubMed  Google Scholar 

  • Keech B, Barritt GJ (1967) Allosteric activation of sheep kidney pyruvate carboxylase by the magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (MgATP2-). J Biol Chem 242(9):1983–1987

    CAS  PubMed  Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58:195–221

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Nakajima Y, Sugio S, Yong-Biao J, Sueda S, Kondo H (2004) Structure of the biotin carboxylase subunit of pyruvate carboxylase from Aquifex aeolicus at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr 60(Pt 3):486–492. doi:10.1107/S0907444904000423

    Article  PubMed  Google Scholar 

  • Kondo S, Nakajima Y, Sugio S, Sueda S, Islam MN, Kondo H (2007) Structure of the biotin carboxylase domain of pyruvate carboxylase from Bacillus thermodenitrificans. Acta Crystallogr D Biol Crystallogr 63(Pt 8):885–890. doi:10.1107/S0907444907029423

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Kraszewski JL, Purwantini E, Mukhopadhyay B (2006) Identification of pyruvate carboxylase genes in Pseudomonas aeruginosa PAO1 and development of a P. aeruginosa-based overexpression system for alpha4- and alpha4beta4-type pyruvate carboxylases. Appl Environ Microbiol 72(12):7785–7792. doi:10.1128/AEM.01564-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasso G, Yu LP, Gil D, Xiang S, Tong L, Valle M (2010) Cryo-EM analysis reveals new insights into the mechanism of action of pyruvate carboxylase. Structure 18(10):1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasso G, Yu LP, Gil D, Lazaro M, Tong L, Valle M (2014) Functional conformations for pyruvate carboxylase during catalysis explored by cryoelectron microscopy. Structure 22(6):911–922. doi:10.1016/j.str.2014.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legge GB, Branson JP, Attwood PV (1996) Effects of acetyl CoA on the pre-steady-state kinetics of the biotin carboxylation reaction of pyruvate carboxylase. Biochemistry 35(12):3849–3856. doi:10.1021/bi952797q

    Article  CAS  PubMed  Google Scholar 

  • Lietzan AD, Menefee AL, Zeczycki TN, Kumar S, Attwood PV, Wallace JC, Cleland WW, St Maurice M (2011) Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli. Biochemistry 50(45):9708–9723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lietzan AD, St Maurice M (2013a) Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs. Biochem Biophys Res Commun 441(2):377–382. doi:10.1016/j.bbrc.2013.10.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lietzan AD, St Maurice M (2013b) A substrate-induced biotin binding pocket in the carboxyl transferase domain of pyruvate carboxylase. J Biol Chem 288(27):19915–19925

    Google Scholar 

  • Lietzan AD, Lin Y, St Maurice M (2014) The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase. Arch Biochem Biophys 562:70–79. doi:10.1016/j.abb.2014.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Mulder H, Zhao P, Burgess SC, Jensen MV, Kamzolova S, Newgard CB, Sherry AD (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A 99(5):2708–2713. doi:10.1073/pnas.052005699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Valencia I, Roe CR, Pascual JM (2010) Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol Genet Metab 101(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Menefee AL, Zeczycki TN (2014) Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase. FEBS J 281(5):1333–1354. doi:10.1111/febs.12713

    Article  CAS  PubMed  Google Scholar 

  • Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL (2008) Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Protein Sci 17(10):1706–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnot S, Serre V, Chadefaux-Vekemans B, Aupetit J, Romano S, De Lonlay P, Rival JM, Munnich A, Steffann J, Bonnefont JP (2009) Structural insights on pathogenic effects of novel mutations causing pyruvate carboxylase deficiency. Hum Mutat 30(5):734–740. doi:10.1002/humu.20908

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay B, Stoddard SF, Wolfe RS (1998) Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain deltaH. J Biol Chem 273(9):5155–5166

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay B, Patel VJ, Wolfe RS (2000) A stable archaeal pyruvate carboxylase from the hyperthermophile Methanococcus jannaschii. Arch Microbiol 174(6):406–414

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay B, Purwantini E, Kreder CL, Wolfe RS (2001) Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization. J Bacteriol 183(12):3804–3810. doi:10.1128/JB.183.12.3804-3810.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogita T, Knowles JR (1988) On the intermediacy of carboxyphosphate in biotin-dependent carboxylations. Biochemistry 27(21):8028–8033

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard E, Duno M, Moller LB, Kalkanoglu-Sivri HS, Dursun A, Aliefendioglu D, Leth H, Dahl M, Christensen E, Wibrand F (2013) Novel Mutations in the PC Gene in Patients with Type B Pyruvate Carboxylase Deficiency. JIMD Rep 9:1–5. doi:10.1007/8904_2012_173

    Article  PubMed  Google Scholar 

  • Phannasil P, Thuwajit C, Warnnissorn M, Wallace JC, MacDonald MJ, Jitrapakdee S (2015) Pyruvate carboxylase is up-regulated in breast cancer and essential to support growth and invasion of MDA-MB-231 cells. PLoS One 10(6):e0129848. doi:10.1371/journal.pone.0129848

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson BH (2006) Lactic acidemia and mitochondrial disease. Mol Genet Metab 89(1–2):3–13. doi:10.1016/j.ymgme.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  • Salto R, Sola M, Oliver FJ, Vargas AM (1996) Effects of starvation, diabetes and carbon tetrachloride intoxication on rat kidney cortex and liver pyruvate carboxylase levels. Arch Physiol Biochem 104(7):845–850. doi:10.1076/apab.104.7.845.13111

    Article  CAS  PubMed  Google Scholar 

  • Saudubray JM, Marsac C, Cathelineau CL, Besson Leaud M, Leroux JP (1976) Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings. Acta Paediatr Scand 65(6):717–724

    Article  CAS  PubMed  Google Scholar 

  • Scheres SH (2010) Classification of structural heterogeneity by maximum-likelihood methods. Methods Enzymol 482:295–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scrutton MC, Utter MF (1967) Pyruvate carboxylase IX. Some properties of the activation by certain acyl derivatives of coenzyme A. J Biol Chem 242(8):1723–1735

    CAS  PubMed  Google Scholar 

  • Scrutton MC, Keech DB, Utter MF (1965) Pyruvate carboxylase. IV. Partial reactions and the locus of activation by acetyl coenzyme A. J Biol Chem 240:574–581

    CAS  PubMed  Google Scholar 

  • Sellers K, Fox MP, Bousamra M 2nd, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TW (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest 125(2):687–698. doi:10.1172/JCI72873

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Chou CY, Chang GG, Tong L (2006) Is dimerization required for the catalytic activity of bacterial biotin carboxylase? Mol Cell 22(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • St Maurice M, Reinhardt L, Surinya KH, Attwood PV, Wallace JC, Cleland WW, Rayment I (2007) Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science (New York, NY) 317(5841):1076–1079

    Article  CAS  Google Scholar 

  • Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158(6):1389–1401. doi:10.1016/j.cell.2014.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoden JB, Blanchard CZ, Holden HM, Waldrop GL (2000) Movement of the biotin carboxylase B-domain as a result of ATP binding. J Biol Chem 275(21):16183–16190

    Article  CAS  PubMed  Google Scholar 

  • Tipton PA, Cleland WW (1988) Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations. Biochemistry 27(12):4317–4325

    Article  CAS  PubMed  Google Scholar 

  • Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70(5):863–891

    Article  CAS  PubMed  Google Scholar 

  • Tran TH, Hsiao YS, Jo J, Chou CY, Dietrich LE, Walz T, Tong L (2015) Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518(7537):120–124. doi:10.1038/nature13912

    Article  CAS  PubMed  Google Scholar 

  • Utter MF, Keech DB (1960) Formation of oxaloacetate from pyruvate and carbon dioxide. J Biol Chem 235:PC17–PC18

    CAS  PubMed  Google Scholar 

  • Waldrop GL, Rayment I, Holden HM (1994) Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 33(34):10249–10256

    Article  CAS  PubMed  Google Scholar 

  • Waldrop GL, Holden HM, St Maurice M (2013) The enzymes of biotin dependent CO(2) metabolism: what structures reveal about their reaction mechanisms. Protein Sci 21(11):1597–1619

    Article  Google Scholar 

  • Wang D, De Vivo D (1993) Pyruvate Carboxylase Deficiency. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) GeneReviews(R). Seattle (WA)

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science (New York, NY) 123(3191):309–314

    Article  CAS  Google Scholar 

  • Warren GB, Tipton KF (1974) The role of acetyl-CoA in the reaction pathway of pig-liver pyruvate carboxylase. Eur J Biochem 47(3):549–554

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Tong L (2015) Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature 526(7575):723–727. doi:10.1038/nature15375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wexler ID, Kerr DS, Du Y, Kaung MM, Stephenson W, Lusk MM, Wappner RS, Higgins JJ (1998) Molecular characterization of pyruvate carboxylase deficiency in two consanguineous families. Pediatr Res 43(5):579–584. doi:10.1203/00006450-199805000-00004

    Article  CAS  PubMed  Google Scholar 

  • Xiang S, Tong L (2008) Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 15(3):295–302

    Article  CAS  PubMed  Google Scholar 

  • Yu LP, Xiang S, Lasso G, Gil D, Valle M, Tong L (2009) A symmetrical tetramer for S. Aureus pyruvate carboxylase in complex with coenzyme A. Structure 17(6):823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LP, Chou CY, Choi PH, Tong L (2013) Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis. Biochemistry 52(3):488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeczycki TN, St Maurice M, Jitrapakdee S, Wallace JC, Attwood PV, Cleland WW (2009) Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli. Biochemistry 48(20):4305–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeczycki TN, Maurice MS, Attwood PV (2010) Inhibitors of Pyruvate Carboxylase. Open Enzym Inhib J 3:8–26. doi:10.2174/1874940201003010008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeczycki TN, Menefee AL, Adina-Zada A, Jitrapakdee S, Surinya KH, Wallace JC, Attwood PV, St Maurice M, Cleland WW (2011a) Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli. Biochemistry 50(45):9724–9737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeczycki TN, Menefee AL, Jitrapakdee S, Wallace JC, Attwood PV, St Maurice M, Cleland WW (2011b) Activation and inhibition of pyruvate carboxylase from Rhizobium etli. Biochemistry 50(45):9694–9707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant BFU2012-34873 from the Spanish Ministry of Economy and Competitiveness, and RGP0062/2016 from the HFSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valle, M. (2017). “Pyruvate Carboxylase, Structure and Function”. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_11

Download citation

Publish with us

Policies and ethics