Skip to main content

Immunotherapy for Malignant Gliomas

  • Chapter
  • First Online:
Current Understanding and Treatment of Gliomas

Part of the book series: Cancer Treatment and Research ((CTAR,volume 163))

Abstract

Cancer immunotherapy aims to harness the innate ability of the immune system to recognize and destroy malignant cells. Immunotherapy for malignant gliomas is an emerging field that promises the possibility of highly specific and less toxic treatment compared to conventional chemotherapy. In addition, immunotherapy has the added benefit of sustained efficacy once immunologic memory is induced. Although there are numerous therapeutic agents that boost general immune function and facilitate improved antitumor immunity, to date, immunotherapy for gliomas has focused primarily on active vaccination against tumor-specific antigens. The results of numerous early phase clinical trials demonstrate promising results for vaccine therapy, but no therapy has yet proven to improve survival in a randomized, controlled trial. The major barrier to immunotherapy in malignant gliomas is tumor-induced immunosuppression. The mechanisms of immunosuppression are only now being elucidated, but clearly involve a combination of factors including regulatory T cells, tumor-associated PD-L1 expression, and CTLA-4 signaling. Immunomodulatory agents have been developed to combat these immunosuppressive factors and have demonstrated efficacy in other cancers. The future of glioma immunotherapy likely lies in a combination of active vaccination and immune checkpoint inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148. doi:10.1016/j.immuni.2004.07.017, pii:S1074761304002092

  2. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486, pii:331/6024/1565

  3. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370: 59–67. doi:10.1016/S0140-6736(07)61050-2, pii:S0140-6736(07)61050-2

  4. Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P (2014) Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2:14. doi:10.1186/2051-1426-2-14, pii:2051-1426-2-14

  5. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. doi:10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  6. Peinert S, Kershaw MH, Prince HM (2009) Chimeric T cells for adoptive immunotherapy of cancer: using what have we learned to plan for the future. Immunotherapy 1:905–912. doi:10.2217/imt.09.69

    Article  PubMed  Google Scholar 

  7. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489. doi:10.1038/nature10673, pii:nature10673

  8. Mukherji B, Chakraborty NG, Sivanandham M (1990) T-cell clones that react against autologous human tumors. Immunol Rev 116:33–62

    Article  CAS  PubMed  Google Scholar 

  9. Berke G (1995) The CTL’s kiss of death. Cell 81(1):9–12. doi:10.1016/0092-8674(95)90365-8,pii:0092-8674(95)90365-8

  10. Grimm EA, Owen-Schaub L (1991) The IL-2 mediated amplification of cellular cytotoxicity. J Cell Biochem 45:335–339. doi:10.1002/jcb.240450405

    Article  CAS  PubMed  Google Scholar 

  11. McDermott DF, Regan MM, Clark JI et al (2005) Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23:133–141. doi:10.1200/JCO.2005.03.206, pii:23/1/133

  12. Sparano JA, Fisher RI, Sunderland M et al (1993) Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin Oncol 11:1969–1977

    CAS  PubMed  Google Scholar 

  13. Lu H (2014) TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol 5:83. doi:10.3389/fimmu.2014.00083

    PubMed Central  PubMed  Google Scholar 

  14. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi:10.1038/nrc3239, pii:nrc3239

  15. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280. doi:10.1073/pnas.0915174107, pii:0915174107

  16. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  17. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

  18. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374. doi:10.1002/glia.20117

    Article  PubMed  Google Scholar 

  19. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190. doi:10.1002/glia.1107,pii:glia.1107

  20. Pachter JS, de Vries HE, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62:593–604

    CAS  PubMed  Google Scholar 

  21. Giometto B, Bozza F, Faresin F, Alessio L, Mingrino S, Tavolato B (1996) Immune infiltrates and cytokines in gliomas. Acta Neurochir (Wien) 138:50–56

    Article  CAS  Google Scholar 

  22. Parney IF, Waldron JS, Parsa AT (2009) Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg 110:572–582. doi:10.3171/2008.7.JNS08475, pii:10.3171/2008.7.JNS08475

  23. Hatanpaa KJ, Burma S, Zhao D, Habib AA (2010) Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12:675–684

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gan HK, Kaye AH, Luwor RB (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16:748–754. doi:10.1016/j.jocn.2008.12.005, pii:S0967-5868(09)00046-0

  25. Heimberger AB, Sampson JH (2009) The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther 9:1087–1098. doi:10.1517/14712590903124346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729. doi:10.1200/JCO.2010.28.6963, pii:JCO.2010.28.6963

  27. Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971. doi:10.3171/JNS/2008/108/5/0963

    Article  CAS  PubMed  Google Scholar 

  28. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014. doi:10.1073/pnas.1219747110, pii:1219747110

  29. Pollack IF, Jakacki RI, Butterfield LH et al (2014) Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol. doi:10.1200/JCO.2013.54.0526, pii:JCO.2013.54.0526

  30. Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054. doi:10.1093/brain/aws042, pii:aws042

  31. Phuphanich S, Wheeler CJ, Rudnick JD et al (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135. doi:10.1007/s00262-012-1319-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Prins RM, Wang X, Soto H et al (2013) Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother 36:152–157. doi:10.1097/CJI.0b013e3182811ae4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Liau LM, Prins RM, Kiertscher SM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525. doi:10.1158/1078-0432.CCR-05-0464, pii:11/15/5515

  34. Wheeler CJ, Black KL, Liu G et al. (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964. doi:10.1158/0008-5472.CAN-07-5973, pii:68/14/5955

  35. Srivastava PK, Callahan MK, Mauri MM (2009) Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther 9:179–186. doi:10.1517/14712590802633918

    Article  CAS  PubMed  Google Scholar 

  36. Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128–6133. doi:10.1073/pnas.0308180101, pii:0308180101

  37. Crane CA, Han SJ, Ahn B et al (2013) Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res 19:205–214. doi:10.1158/1078-0432.CCR-11-3358, pii:1078-0432.CCR-11-3358

  38. Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 16:274–279. doi:10.1093/neuonc/not203, pii:not203

  39. Bloch O, Kaur R, Aghi MK, McDermott MW, Berger MS, Parsa AT (2013) Glioma-induced immunosuppression shortens progression-free survival in a trial of immunotherapy for glioblastoma. In: American association of neurological surgeons annual meeting, New Orleans, LA

    Google Scholar 

  40. Brooks WH, Netsky MG, Normansell DE, Horwitz DA (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J Exp Med 136:1631–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Elliott LH, Brooks WH, Roszman TL (1984) Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. J Immunol 132:1208–1215

    CAS  PubMed  Google Scholar 

  42. Gousias K, Markou M, Arzoglou V, Voulgaris S, Vartholomatos G, Kostoula A, Voulgari P, Polyzoidis K, Kyritsis AP (2010) Frequent abnormalities of the immune system in gliomas and correlation with the WHO grading system of malignancy. J Neuroimmunol 226: 36–42. doi:10.1016/j.jneuroim.2010.05.027, pii:S0165-5728(10)00211-0

  43. Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72:2162–2171. doi:10.1158/0008-5472.CAN-11-3687, pii:72/9/2162

  44. Fecci PE, Mitchell DA, Whitesides JF et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302. doi:10.1158/0008-5472.CAN-05-3773, pii:66/6/3294

  45. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172. doi:10.1158/1078-0432.CCR-08-0320, pii:14/16/5166

  46. Learn CA, Fecci PE, Schmittling RJ et al. (2006) Profiling of CD4+, CD8+, and CD4+ CD25+ CD45RO+ FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clin Cancer Res 12:7306–7315. doi:10.1158/1078-0432.CCR-06-1727, pii:12/24/7306

  47. Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 14:584–595. doi:10.1093/neuonc/nos014, pii:nos014

  48. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105:430–437. doi:10.3171/jns.2006.105.3.430

    Article  PubMed  Google Scholar 

  49. Sampson JH, Schmittling RJ, Archer GE et al (2012) A pilot study of IL-2Ralpha blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 7:e31046. doi:10.1371/journal.pone.0031046, pii:PONE-D-11-20574

  50. Fong B, Jin R, Wang X, Safaee M, Lisiero DN, Yang I, Li G, Liau LM, Prins RM (2012) Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS One 7:e32614. doi:10.1371/journal.pone.0032614, pii:PONE-D-11-22564

  51. Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34:556–563. doi:10.1016/j.it.2013.07.003, pii:S1471-4906(13)00110-5

  52. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466, pii:NEJMoa1003466

  53. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. doi:10.1038/nm730, pii:nm730

  54. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.1056/NEJMoa1200694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi:10.1056/NEJMoa1200690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88. doi:10.1038/nm1517, pii:nm1517

  57. Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467

    CAS  PubMed  Google Scholar 

  58. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19:3165–3175. doi:10.1158/1078-0432.CCR-12-3314, pii:1078-0432.CCR-12-3314

  59. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann JE, Helseth E, Rasmussen AM, Lote K, Aamdal S, Gaudernack G, Kvalheim G, Langmoen IA (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer ImmunolImmunother 62(9):1499–1509. doi:10.1007/s00262-013-1453-3

    Article  CAS  Google Scholar 

  60. Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, Gui J, Szczepiorkowski ZM, Tosteson TD, Rhodes CH, Wishart HA, Lewis LD, Ernstoff MS (2011) Immune response in patients with newly diagnosed glioblastomamultiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34(4):382–389. doi:10.1097/CJI.0b013e318215e300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Wen PY, Reardon DA, Phuphanich S, Aiken R, Landolfi JC, Curry WT, Zhu JJ, Glantz MJ, Peereboom DM, Markert J, LaRocca RV, O’Rourke D, Fink KL, Kim LJ, Gruber ML, Lesser GJ, Pan E, Kesari S, Hawkins ES, Yu J (2014) A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol 32:5s (suppl; abstract number 2005)

    Google Scholar 

  62. Lai R, Recht LD, Reardon DA, Paleologos N, Groves MD, Rosenfeld MR, Meech S, Davis TA, Pavlov D, Sampson JH (2010) Interim data for ACT III: phase II trial of PF-04948568 (CDX-110) in combination with temozolomide (TMZ) in patients with glioblastoma (GBM). J Clin Oncol 28:15s (suppl; abstract number 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orin Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bloch, O. (2015). Immunotherapy for Malignant Gliomas. In: Raizer, J., Parsa, A. (eds) Current Understanding and Treatment of Gliomas. Cancer Treatment and Research, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-12048-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12048-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12047-8

  • Online ISBN: 978-3-319-12048-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics