Skip to main content

RECQ DNA Helicases and Osteosarcoma

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them—BLM, WRN, and RECQL4—are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund–Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The “tumor suppressor” role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4’s functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aggarwal M, Banerjee T, Sommers JA et al (2013) Targeting an Achilles’ heel of cancer with a WRN helicase inhibitor. Cell Cycle 12(20):3329–3335

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal M, Sommers JA, Shoemaker RH et al (2011) Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci U S A 108(4):1525–1530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374(Pt 3):577–606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Belyea B, Kephart JG, Blum J et al (2012) Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012:406239

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bernstein KA, Gangloff S, Rothstein R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Burks LM, Yin J, Plon SE (2007) Nuclear import and retention domains in the amino terminus of RECQL4. Gene 391(1–2):26–38

    Article  PubMed  CAS  Google Scholar 

  7. Cabral RE, Queille S, Bodemer C et al (2008) Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. Mutat Res 643(1–2):41–47

    Article  PubMed  CAS  Google Scholar 

  8. Calo E, Quintero-Estades JA, Danielian PS et al (2010) Rb regulates fate choice and lineage commitment in vivo. Nature 466(7310):1110–1114

    Article  PubMed  PubMed Central  Google Scholar 

  9. Capp C, Wu J, Hsieh TS (2009) Drosophila RecQ4 has a 3′-5′ DNA helicase activity that is essential for viability. J Biol Chem 284(45):30845–30852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chi Z, Nie L, Peng Z et al (2012) RecQL4 cytoplasmic localization: implications in mitochondrial DNA oxidative damage repair. Int J Biochem Cell Biol 44(11):1942–1951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9):644–654

    Article  PubMed  CAS  Google Scholar 

  12. Cleton-Jansen AM, Anninga JK, Briaire-de Bruijin IH et al (2009) Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 101(11):1909–1918

    Article  PubMed  PubMed Central  Google Scholar 

  13. Crevel G, Vo N, Crevel I et al (2012) Drosophila RecQ4 is directly involved in both DNA replication and the response to UV damage in S2 cells. PLoS One 7(11):e49505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Croteau DL, Rossi ML, Canugovi C et al (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11(3):456–466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Croteau DL, Rossi ML, Ross J et al (2012) RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity. Biochim Biophys Acta 1822(11):1727–1734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. De S, Kumari J, Mudgal R et al (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125(Pt 10):2509–2522

    Article  PubMed  CAS  Google Scholar 

  17. Debeljak M, Zver A, Jazbec J (2009) A patient with Baller-Gerold syndrome and midline NK/T lymphoma. Am J Med Genet A 149A(4):755–759

    Article  PubMed  CAS  Google Scholar 

  18. Dietschy T, Shevelev I, Pena-Diaz J et al (2009) p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization. J Cell Sci 122(Pt 8):1258–1267

    Article  PubMed  CAS  Google Scholar 

  19. el-Khoury JM, Haddad SN, Atallah NG (1997) Osteosarcomatosis with Rothmund-Thomson syndrome. Br J Radiol 70:215–218

    Article  PubMed  CAS  Google Scholar 

  20. Elefteriou F, Yang X (2011) Genetic mouse models for bone studies strengths and limitations. Bone 49(6):1242–1254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ellis NA, Groden J, Ye TZ et al (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83(4):655–666

    Article  PubMed  CAS  Google Scholar 

  22. Fan W, Luo J (2008) RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J Biol Chem 283(43):29037–29044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ferrarelli LK, Popuri V, Ghosh AK et al (2013) The RECQL4 protein, deficient in Rothmund-Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. DNA Repair (Amst) 12(7):518–528

    Article  CAS  Google Scholar 

  24. German J (1995) Bloom’s syndrome. Dermatol Clin 13(1):7–18

    PubMed  CAS  Google Scholar 

  25. German J (1997) Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93(1):100–106

    Article  PubMed  CAS  Google Scholar 

  26. Ghosh AK, Rossi ML, Singh DK et al (2012) RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J Biol Chem 287(1):196–209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Glass DA, Karsenty G (2007) In vivo analysis of Wnt signaling in bone. Endocrinology 148(6):2630–2634

    Article  PubMed  CAS  Google Scholar 

  28. Grandori C, Wu KJ, Fernandez P et al (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17(13):1569–1574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hicks MJ, Roth JR, Kozinetz CA et al (2007) Clinicopathologic features of osteosarcoma in patients with Rothmund-Thomson syndrome. J Clin Oncol 25(4):370–375

    Article  PubMed  Google Scholar 

  30. Hoki Y, Araki R, Fujimori A et al (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet 12(18):2293–2299

    Article  PubMed  CAS  Google Scholar 

  31. Hu H, Hilton MJ, Tu X et al (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132(1):49–60

    Article  PubMed  CAS  Google Scholar 

  32. Ichikawa K, Noda T, Furuichi Y (2002) Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases. Nippon Yakurigaku Zasshi 119(4):219–226

    Article  PubMed  CAS  Google Scholar 

  33. Im JS, Ki SH, Farina A et al (2009) Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 106(37):15628–15632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Jensen MB, Dunn CA, Keijzers G et al (2012) The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging (Albany NY) 4(11):790–802

    Google Scholar 

  35. Jin W, Liu H, Zhang Y et al (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents. Hum Genet 123(6):643–653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Kamimura Y, Masumoto H, Sugino A et al (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18(10):6102–6109

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Kansara M, Tsang M, Kodjabachian L et al (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119(4):837–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Kitao S, Ohsugi I, Ichikawa K et al (1998) Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54(3):443–452

    Article  PubMed  CAS  Google Scholar 

  39. Kitao S, Shimamoto A, Goto M et al (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22(1):82–84

    Article  PubMed  CAS  Google Scholar 

  40. Kobbe D, Focke M, Puchta H (2010) Purification and characterization of RecQ helicases of plants. Methods Mol Biol 587:195–209

    Article  PubMed  CAS  Google Scholar 

  41. Kohzaki M, Chiourea M, Versini G et al (2012) The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis 33(6):1203–1210

    Article  PubMed  CAS  Google Scholar 

  42. Kumata Y, Tada S, Yamanada Y et al (2007) Possible involvement of RecQL4 in the repair of double-strand DNA breaks in Xenopus egg extracts. Biochim Biophys Acta 1773(4):556–564

    Article  PubMed  CAS  Google Scholar 

  43. Lauper JM, Krause A, Vaughan TL et al (2013) Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One 8(4):e59709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Lin PP, Pandey MK, Jin F et al (2009) Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis 30(10):1789–1795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Linton KM, Hey Y, Saunders E et al (2008) Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br J Cancer 98(8):1403–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Logan M, Martin JF, Nagy A et al (2002) Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33(2):77–80

    Article  PubMed  CAS  Google Scholar 

  47. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  PubMed  PubMed Central  Google Scholar 

  48. Macris MA, Krejci L, Bussen W et al (2006) Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair (Amst) 5(2):172–180

    Article  CAS  Google Scholar 

  49. Maire G, Yoshimoto M, Chilton-Macneill S et al (2009) Recurrent RECQL4 imbalance and increased gene expression levels are associated with structural chromosomal instability in sporadic osteosarcoma. Neoplasia 11(3):260–268, 3p

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Mann MB, Hodges CA, Barnes E et al (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14(6):813–825

    Article  PubMed  CAS  Google Scholar 

  51. Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408(6809):263–266

    Article  PubMed  CAS  Google Scholar 

  52. Matsuno K, Kumano M, Kubota Y et al (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26(13):4843–4852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Mehollin-Ray AR, Kozinetz CA, Schlesinger AE et al (2008) Radiographic abnormalities in Rothmund-Thomson syndrome and genotype-phenotype correlation with RECQL4 mutation status. AJR Am J Roentgenol 191(2):W62–W66

    Article  PubMed  Google Scholar 

  54. Monnat RJ Jr (2010) Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology. Semin Cancer Biol 20(5):329–339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Morozov V, Mushegian AR, Koonin EV et al (1997) A putative nucleic acid-binding domain in Bloom’s and Werner’s syndrome helicases. Trends Biochem Sci 22(11):417–418

    Article  PubMed  CAS  Google Scholar 

  56. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  PubMed  CAS  Google Scholar 

  57. Nakayama K, Irino N, Nakayama H (1985) The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet 200(2):266–271

    Article  PubMed  CAS  Google Scholar 

  58. Narayan G, Bourdon V, Chaganti S et al (2007) Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46(4):373–384

    Article  PubMed  CAS  Google Scholar 

  59. Nguyen GH, Dexheimer TS, Rosenthal AS et al (2013) A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 20(1):55–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Nishijo K, Nakayama T, Aoyama T et al (2004) Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer 111(3):367–372

    Article  PubMed  CAS  Google Scholar 

  61. Ohlenschlager O, Kuhnert A, Schneider A et al (2012) The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 40(17):8309–8324

    Article  PubMed  PubMed Central  Google Scholar 

  62. Park SJ, Lee YJ, Beck BD et al (2006) A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA Cell Biol 25(12):696–703

    Article  PubMed  CAS  Google Scholar 

  63. Petkovic M, Dietschy T, Freire R et al (2005) The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118(Pt 18):4261–4269

    Article  PubMed  CAS  Google Scholar 

  64. Rossi ML, Ghosh AK, Kulikowicz T et al (2010) Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair (Amst) 9(7):796–804

    Article  CAS  Google Scholar 

  65. Rothmund A (1868) Ueber cataracten in verbindung mit einer eigenthumlichen hautdegeneration. Arch Ophthamol 14:159–182

    Google Scholar 

  66. Sadikovic B, Thorner P, Chilton-Macneill S et al (2010) Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10:202

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sangrithi MN, Bernal JA, Madine M et al (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121(6):887–898

    Article  PubMed  CAS  Google Scholar 

  68. Schurman SH, Hedayati M, Wang Z et al (2009) Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 18(18):3470–3483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Sengupta S, Shimamoto A, Koshiji M et al (2005) Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene 24(10):1738–1748

    Article  PubMed  CAS  Google Scholar 

  70. Shinya A, Nishigori C, Moriwaki S et al (1993) A case of Rothmund-Thomson syndrome with reduced DNA repair capacity. Arch Dermatol 129(3):332–336

    Article  PubMed  CAS  Google Scholar 

  71. Siitonen HA, Kopra O, Kaariainen H et al (2003) Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12(21):2837–2844

    Article  PubMed  CAS  Google Scholar 

  72. Siitonen HA, Sotkasiira J, Biervliet M et al (2008) The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 17(2):151–158

    Article  PubMed  PubMed Central  Google Scholar 

  73. Singh DK, Karmakar P, Aamann M et al (2010) The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 9(3):358–371

    Article  PubMed  CAS  Google Scholar 

  74. Singh DK, Popuri V, Kulikowicz T et al (2012) The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res 40(14):6632–6648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Smith PJ, Paterson MC (1982) Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients. Mutat Res 94(1):213–228

    Article  PubMed  CAS  Google Scholar 

  76. Su Y, Meador JA, Calaf GM et al (2010) Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 70(22):9207–9217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Suzuki T, Kohno T, Ishimi Y (2009) DNA helicase activity in purified human RECQL4 protein. J Biochem 146(3):327–335

    Article  PubMed  CAS  Google Scholar 

  78. Tanaka S, Komeda Y, Umemori T et al (2013) Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol 33(13):2614–2622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Tao J, Chen S, Lee B (2010) Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci 1192:257–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Taylor WB (1957) Rothmund’s syndrome-Thomson’s syndrome. Arch Dermatol 75:236–244

    Article  CAS  Google Scholar 

  81. Thangavel S, Mendoza-Maldonado R, Tissino E et al (2010) Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol 30(6):1382–1396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Thomson MS (1923) An hitherto undescribed familial disease. Br J Dermatol 35:455–462

    Article  Google Scholar 

  83. Tuteja N, Tuteja R (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271(10):1835–1848

    Article  PubMed  CAS  Google Scholar 

  84. Van Maldergem L, Piard J, Larizza L, Wang LL (2013) RECQL4-related recessive conditions. In: Epstein CJ, Erickson RP, Winshaw-Boris A (eds) Inborn errors of development, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  85. Van Maldergem L, Siitonen HA, Jalkh N et al (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vijayakumar S, Liu G, Rus IA et al (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell 19(5):601–612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Wang H, Elledge SJ (1999) DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96(7):3824–3829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Wang LL (2005) Biology of osteogenic sarcoma. Cancer J 11(4):294–305

    Article  PubMed  CAS  Google Scholar 

  89. Wang LL, Gannavarapu A, Kozinetz CA et al (2003) Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95(9):669–674

    Article  PubMed  CAS  Google Scholar 

  90. Wang LL, Levy ML, Lewis RA et al (2001) Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet 102(1):11–17

    Article  PubMed  CAS  Google Scholar 

  91. Werner SR, Prahalad AK, Yang J et al (2006) RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochem Biophys Res Commun 345(1):403–409

    Article  PubMed  CAS  Google Scholar 

  92. Woo LL, Futami K, Shimamoto A et al (2006) The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312(17):3443–3457

    Article  PubMed  CAS  Google Scholar 

  93. Wu J, Capp C, Feng L et al (2008) Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 323(1):130–142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Xu L, Li S, Stohr BA (2013) The role of telomere biology in cancer. Annu Rev Pathol 8:49–78

    Article  PubMed  CAS  Google Scholar 

  95. Xu X, Liu Y (2009) Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J 28(5):568–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Xu X, Rochette PJ, Feyissa EA et al (2009) MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J 28(19):3005–3014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Xu Y, Lei Z, Huang H et al (2009) dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One 4(7):e6107

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yin J, Kwon YT, Varshavsky A et al (2004) RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13(20):2421–2430

    Article  PubMed  CAS  Google Scholar 

  99. Yu CE, Oshima J, Fu YH et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262

    Article  PubMed  CAS  Google Scholar 

  100. Zhang P, Yang Y, Zweidler-McKay PA et al (2008) Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14(10):2962–2969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa L. Wang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lu, L., Jin, W., Liu, H., Wang, L.L. (2014). RECQ DNA Helicases and Osteosarcoma. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_7

Download citation

Publish with us

Policies and ethics