Skip to main content

Galanin, Galanin Receptor Subtypes and Depression-Like Behaviour

  • Chapter
  • First Online:
Galanin

Part of the book series: Experientia Supplementum ((EXS,volume 102))

Abstract

The pathophysiology of depression remains unclear, but involves disturbances in brain monoaminergic transmission. Current antidepressant drugs, which act by enhancing this type of neurotransmission, have limited therapeutic efficacy in a number of patients, and also cause serious side-effects, which limits their compliance. Increasing evidence suggests that neuropeptides, including galanin, can be of relevance in mood disorders. Galanin is co-expressed with and modulates noradrenaline and serotonin transmission, both implicated in depression. Pharmacological and genetic studies suggest a role for galanin in depression-like behaviour in rodents, involving specific receptor subtypes. Thus, stimulation of GalR1 and/or GalR3 receptors results in depression-like phenotype, while activation of the GalR2 receptor reduces depression-like behaviour in the rat. These findings suggest that galanin receptor subtypes may represent novel targets for the development of antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  PubMed  Google Scholar 

  2. DSM-IV (2000) Diagnostic and statistical manual IV. American Psychiatric Press, Washington DC

    Google Scholar 

  3. Wittchen HU, Jacobi F (2005) Size and burden of mental disorders in Europe–a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol 15:357–376

    Article  PubMed  CAS  Google Scholar 

  4. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349:1436–1442

    Article  PubMed  CAS  Google Scholar 

  5. Fava M, Kendler KS (2000) Major depressive disorder. Neuron 28:335–341

    Article  PubMed  CAS  Google Scholar 

  6. Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214

    Article  PubMed  CAS  Google Scholar 

  7. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  8. Siever LJ, Davis KL (1985) Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry 142:1017–1031

    PubMed  CAS  Google Scholar 

  9. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19

    Article  PubMed  Google Scholar 

  10. Harro J, Oreland L (2001) Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implication of the locus coeruleus. Brain Res Rev 38:79–128

    Article  PubMed  CAS  Google Scholar 

  11. Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 7:193–218

    Article  PubMed  CAS  Google Scholar 

  12. Åsberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 33:1193–1197

    Article  PubMed  Google Scholar 

  13. Roy A, De Jong J, Linnoila M (1989) Cerebrospinal fluid monoamine metabolites and suicidal behavior in depressed patients. A 5-year follow-up study. Arch Gen Psychiatry 46:609–612

    Article  PubMed  CAS  Google Scholar 

  14. Maes M, Meltzer H (1995) The serotonin hypothesis of major depression. In: Bloom F, Kupfer D (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 933–944

    Google Scholar 

  15. Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99S–105S

    PubMed  CAS  Google Scholar 

  16. Albert PR, Lemonde S (2004) 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist 10:575–593

    Article  PubMed  CAS  Google Scholar 

  17. Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361

    Article  PubMed  CAS  Google Scholar 

  18. Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D, Arranz MJ, Murray RM, Vallada HP, Bengel D, Muller CR, Roberts GW, Smeraldi E, Kirov G, Sham P, Lesch KP (1996) A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1:453–460

    PubMed  CAS  Google Scholar 

  19. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  20. Millan MJ (2004) The role of monoamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 500:371–384

    Article  PubMed  CAS  Google Scholar 

  21. Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257:495–496

    Article  PubMed  CAS  Google Scholar 

  22. Sulser F (1989) New perspectives on the molecular pharmacology of affective disorders. Eur Arch Psychiatry Neurol Sci 238:231–239

    Article  PubMed  CAS  Google Scholar 

  23. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  24. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    PubMed  CAS  Google Scholar 

  25. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  PubMed  CAS  Google Scholar 

  26. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  27. Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2:23–33

    Article  PubMed  CAS  Google Scholar 

  28. Hökfelt T, Bartfai T, Bloom F (2003) Neuropeptides: opportunities for drug discovery. Lancet Neurol 2:463–472

    Article  PubMed  Google Scholar 

  29. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G (2003) Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580–588

    Article  PubMed  CAS  Google Scholar 

  30. Ögren SO, Kuteeva E, Hökfelt T, Kehr J (2006) Galanin receptor antagonists: a potential novel pharmacological treatment for mood disorders. CNS Drugs 20:633–654

    Article  PubMed  Google Scholar 

  31. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    Article  PubMed  CAS  Google Scholar 

  32. Rupniak NM, Carlson EJ, Webb JK, Harrison T, Porsolt RD, Roux S, de Felipe C, Hunt SP, Oates B, Wheeldon A (2001) Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 12:497–508

    Article  PubMed  CAS  Google Scholar 

  33. Kuteeva E, Hökfelt T, Ögren SO (2005) Behavioural characterisation of young adult transgenic mice overexpressing galanin under the PDGF-B promoter. Regul Pept 125:67–78

    Article  PubMed  CAS  Google Scholar 

  34. Unschuld PG, Ising M, Erhardt A, Lucae S, Kohli M, Kloiber S, Salyakina D, Thoeringer CK, Kern N, Lieb R, Uhr M, Binder EB, Muller-Myhsok B, Holsboer F, Keck ME (2008) Polymorphisms in the galanin gene are associated with symptom-severity in female patients suffering from panic disorder. J Affect Disord 105:177–184

    Article  PubMed  CAS  Google Scholar 

  35. Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    Article  PubMed  CAS  Google Scholar 

  36. Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    Article  PubMed  CAS  Google Scholar 

  37. Melander T, Hökfelt T, Rökaeus A (1986) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    Article  PubMed  CAS  Google Scholar 

  38. Kordower JH, Le HK, Mufson EJ (1992) Galanin immunoreactivity in the primate central nervous system. J Comp Neurol 319:479–500

    Article  PubMed  CAS  Google Scholar 

  39. Perez SE, Wynick D, Steiner RA, Mufson EJ (2001) Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol 434:158–185

    Article  PubMed  CAS  Google Scholar 

  40. Melander T, Hökfelt T, Rökaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654

    PubMed  CAS  Google Scholar 

  41. Xu ZQ, Shi TJ, Hökfelt T (1998) Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 392:227–251

    Article  PubMed  CAS  Google Scholar 

  42. Xu ZQ, Zhang X, Pieribone VA, Grillner S, Hökfelt T (1998) Galanin-5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 87:79–94

    Article  PubMed  CAS  Google Scholar 

  43. Larm JA, Shen PJ, Gundlach AL (2003) Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphe nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmission. Eur J Neurosci 17:481–493

    Article  PubMed  Google Scholar 

  44. Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hökfelt T (1995) Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 64:861–874

    Article  PubMed  CAS  Google Scholar 

  45. Landry M, Xu ZQ, Calas A, Hökfelt T (2005) Galanin, a new candidate for somato-dendritic release. In: Ludwig M (ed) Dendritic neurotransmitter release. Springer Science + Business Media, Berlin, pp 239–256

    Google Scholar 

  46. Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21:109–117

    Article  PubMed  CAS  Google Scholar 

  47. O'Donnell D, Mennicken F, Hoffert C, Hubatsch D, Pelletier M, Walker P, Ahmad S (2003) Localization of galanin receptor subtypes in the rat CNS. In: Quirion R, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 195–244

    Google Scholar 

  48. Habert-Ortoli E, Amiranoff B, Loquet I, Laburthe M, Mayaux JF (1994) Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci U S A 91:9780–9783

    Article  PubMed  CAS  Google Scholar 

  49. Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C, Jones KA (1998) Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 273:23321–23326

    Article  PubMed  CAS  Google Scholar 

  50. Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Mahle CD, Sutherland GR, Iismaa TP, Dickinson KE, Zimanyi IA (1998) Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 galanin receptor. Mol Brain Res 58:156–169

    Article  PubMed  CAS  Google Scholar 

  51. Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE (1998) Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37:6711–6717

    Article  PubMed  CAS  Google Scholar 

  52. Seutin V, Verbanck P, Massotte L, Dresse A (1989) Galanin decreases the activity of locus coeruleus neurons in vitro. Eur J Pharmacol 164:373–376

    Article  PubMed  CAS  Google Scholar 

  53. Sevcik J, Finta EP, Illes P (1993) Galanin receptors inhibit the spontaneous firing of locus coeruleus neurones and interact with mu-opioid receptors. Eur J Pharmacol 230:223–230

    Article  PubMed  CAS  Google Scholar 

  54. Ma X, Tong YG, Schmidt R, Brown WA, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T, Xu ZQ (2001) Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res 919:169–174

    Article  PubMed  CAS  Google Scholar 

  55. Tsuda K, Tsuda S, Nishio I, Masuyama Y, Goldstein M (1992) Modulation of norepinephrine release by galanin in rat medulla oblongata. Hypertension 20:361–366

    Article  PubMed  CAS  Google Scholar 

  56. Yoshitake T, Reenila I, Ögren SO, Hökfelt T, Kehr J (2003) Galanin attenuates basal and antidepressant drug-induced increase of extracellular serotonin and noradrenaline levels in the rat hippocampus. Neurosci Lett 339:239–242

    Article  PubMed  CAS  Google Scholar 

  57. Kehr J, Yoshitake T, Wang FH, Razani H, Gimenez-Llort L, Jansson A, Yamaguchi M, Ögren SO (2002) Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacology 27:341–356

    Article  PubMed  CAS  Google Scholar 

  58. Swanson CJ, Blackburn TP, Zhang X, Zheng K, Xu ZQ, Hökfelt T, Wolinsky TD, Konkel MJ, Chen H, Zhong H, Walker MW, Craig DA, Gerald CP, Branchek TA (2005) Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci USA 102:17489–17494

    Article  PubMed  CAS  Google Scholar 

  59. Mazarati AM, Baldwin RA, Shinmei S, Sankar R (2005) In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures. J Neurochem 95:1495–1503

    Article  PubMed  CAS  Google Scholar 

  60. Aghajanian GK, Lakoski JM (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res 305:181–185

    Article  PubMed  CAS  Google Scholar 

  61. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  62. Razani H, Diaz-Cabiale Z, Fuxe K, Ögren SO (2000) Intraventricular galanin produces a time-dependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. Neuroreport 11:3943–3948

    Article  PubMed  CAS  Google Scholar 

  63. Kuteeva E, Wardi T, Lundström L, Sollenberg U, Langel U, Hökfelt T, Ögren SO (2008) Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology 33:2573–2585

    Article  PubMed  CAS  Google Scholar 

  64. Yoshitake T, Yoshitake S, Yamaguchi M, Ögren SO, Kehr J (2003) Activation of 5-HT(1A) autoreceptors enhances the inhibitory effect of galanin on hippocampal 5-HT release in vivo. Neuropharmacology 44:206–213

    Article  PubMed  CAS  Google Scholar 

  65. Fuxe K, von Euler G, Agnati LF, Ögren SO (1988) Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neurosci Lett 85:163–167

    Article  PubMed  CAS  Google Scholar 

  66. Hedlund P, Fuxe K (1996) Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain. Ann N Y Acad Sci 780:193–212

    Article  PubMed  CAS  Google Scholar 

  67. Misane I, Razani H, Wang FH, Jansson A, Fuxe K, Ögren SO (1998) Intraventricular galanin modulates a 5-HT1A receptor-mediated behavioural response in the rat. Eur J Neurosci 10:1230–1240

    Article  PubMed  CAS  Google Scholar 

  68. Razani H, Diaz-Cabiale Z, Misane I, Wang FH, Fuxe K, Ögren SO (2001) Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine(1A) receptor mediated function in the rat. Neurosci Lett 299:145–149

    Article  PubMed  CAS  Google Scholar 

  69. Fuxe K, Hedlund P, von Euler G, Lundgren K, Martire M, Ögren SO, Eneroth P, Agnati LF (1991) Galanin/5-HT interactions in the rat central nervous system. Relevance for depression. In: Hökfelt T, Bartfai T, Jacobowitz D, Ottoson D (eds) Galanin. A new multifunctional peptide in the neuro-endocrine system. Macmillan, Hampshire, pp 221–236

    Google Scholar 

  70. Weiss JM, Bonsall RW, Demetrikopoulos MK, Emery MS, West CH (1998) Galanin: a significant role in depression? Ann N Y Acad Sci 863:364–382

    Article  PubMed  CAS  Google Scholar 

  71. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  72. Weiss JM, Boss-Williams KA, Moore JP, Demetrikopoulos MK, Ritchie JC, West CH (2005) Testing the hypothesis that locus coeruleus hyperactivity produces depression-related changes via galanin. Neuropeptides 39:281–287

    Article  PubMed  CAS  Google Scholar 

  73. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  74. Kuteeva E, Wardi T, Hökfelt T, Ögren SO (2007) Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. Eur Neuropsychopharmacol 17:64–69

    Article  PubMed  CAS  Google Scholar 

  75. Bartfai T, Lu X, Badie-Mahdavi H, Barr AM, Mazarati A, Hua XY, Yaksh T, Haberhauer G, Ceide SC, Trembleau L, Somogyi L, Krock L, Rebek J Jr (2004) Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci USA 101:10470–10475

    Article  PubMed  CAS  Google Scholar 

  76. Lu X, Barr AM, Kinney JW, Sanna P, Conti B, Behrens MM, Bartfai T (2005) A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci USA 102:874–879

    Article  PubMed  CAS  Google Scholar 

  77. Florén A, Sollenberg U, Lundström L, Zorko M, Stojan J, Budihna M, Wheatley M, Martin NP, Kilk K, Mazarati A, Bartfai T, Lindgren M, Langel U (2005) Multiple interaction sites of galnon trigger its biological effects. Neuropeptides 39:547–558

    Article  PubMed  CAS  Google Scholar 

  78. Murck H, Held K, Ziegenbein M, Kunzel H, Holsboer F, Steiger A (2004) Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology 29:1205–1211

    Article  PubMed  CAS  Google Scholar 

  79. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  80. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  PubMed  CAS  Google Scholar 

  81. Lu X, Ross B, Sanchez-Alavez M, Zorrilla EP, Bartfai T (2008) Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 42:387–397

    Article  PubMed  CAS  Google Scholar 

  82. Holmes A, Li Q, Koenig EA, Gold E, Stephenson D, Yang RJ, Dreiling J, Sullivan T, Crawley JN (2005) Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology 178:276–285

    Article  PubMed  CAS  Google Scholar 

  83. Yoshitake T, Wang FH, Kuteeva E, Holmberg K, Yamaguchi M, Crawley JN, Steiner R, Bartfai T, Ögren SO, Hökfelt T, Kehr J (2004) Enhanced hippocampal noradrenaline and serotonin release in galanin-overexpressing mice after repeated forced swimming test. Proc Natl Acad Sci USA 101:354–359

    Article  PubMed  CAS  Google Scholar 

  84. Jordan S, Kramer GL, Zukas PK, Petty F (1994) Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res 19:1521–1525

    Article  PubMed  CAS  Google Scholar 

  85. Petty F, Chae Y, Kramer G, Jordan S, Wilson L (1994) Learned helplessness sensitizes hippocampal norepinephrine to mild restress. Biol Psychiatry 35:903–908

    Article  PubMed  CAS  Google Scholar 

  86. Bellido I, Diaz-Cabiale Z, Jimenez-Vasquez PA, Andbjer B, Mathe AA, Fuxe K (2002) Increased density of galanin binding sites in the dorsal raphe in a genetic rat model of depression. Neurosci Lett 317:101–105

    Article  PubMed  CAS  Google Scholar 

  87. Husum H, Van Kammen D, Termeer E, Bolwig G, Mathe A (2003) Topiramate normalizes hippocampal NPY-LI in flinders sensitive line ‘depressed’ rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: implications for mood-stabilizing and weight loss-inducing effects. Neuropsychopharmacology 28:1292–1299

    Article  PubMed  CAS  Google Scholar 

  88. Gottsch ML, Zeng H, Hohmann JG, Weinshenker D, Clifton DK, Steiner RA (2005) Phenotypic analysis of mice deficient in the type 2 galanin receptor (GALR2). Mol Cell Biol 25:4804–4811

    Article  PubMed  CAS  Google Scholar 

  89. Lundström L, Sollenberg U, Brewer A, Kouya PF, Zheng K, Xu X-J, Sheng X, Robinson JK, Wiesenfeld-Hallin Z, Xu ZQ, Hökfelt T, Bartfai T, Langel U (2005) A galanin receptor subtype 1 specific agonist. Int J Pept Res Ther 11:17–27

    Article  CAS  Google Scholar 

  90. Barr AM, Kinney JW, Hill MN, Lu X, Biros S, Rebek J Jr, Bartfai T (2006) A novel, systemically active, selective galanin receptor type-3 ligand exhibits antidepressant-like activity in preclinical tests. Neurosci Lett 405:111–115

    Article  PubMed  CAS  Google Scholar 

  91. Sollenberg U, Lundström L, Bartfai T, Langel U (2006) M871- a novel peptide agonist selectively recognizing the galanin receptor type 2. Int J Pept Res Ther 12:115–119

    Article  CAS  Google Scholar 

  92. Lundström L, Elmquist A, Bartfai T, Langel U (2005) Galanin and its receptors in neurological disorders. Neuromol Med 7:157–180

    Article  Google Scholar 

  93. Tortorella C, Neri G, Nussdorfer GG (2007) Galanin in the regulation of the hypothalamic-pituitary-adrenal axis (Review). Int J Mol Med 19:639–647

    PubMed  CAS  Google Scholar 

  94. Ceresini G, Sgoifo A, Freddi M, Musso E, Parmigiani S, Del Rio G, Valenti G (1998) Effects of galanin and the galanin receptor antagonist galantide on plasma catecholamine levels during a psychosocial stress stimulus in rats. Neuroendocrinology 67:67–72

    Article  PubMed  CAS  Google Scholar 

  95. Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H (2009) The role of the galaninergic system in modulating stress-related responses in an animal model of posttraumatic stress disorder. Biol Psychiatry 65:383–391

    Article  PubMed  CAS  Google Scholar 

  96. Biguet NF, Buda M, Lamouroux A, Samolyk D, Mallet J (1986) Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO J 5:287–291

    PubMed  CAS  Google Scholar 

  97. Berod A, Biguet NF, Dumas S, Bloch B, Mallet J (1987) Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization. Proc Natl Acad Sci USA 84:1699–1703

    Article  PubMed  CAS  Google Scholar 

  98. Holmes PV, Blanchard DC, Blanchard RJ, Brady LS, Crawley JN (1995) Chronic social stress increases levels of preprogalanin mRNA in the rat locus coeruleus. Pharmacol Biochem Behav 50:655–660

    Article  PubMed  CAS  Google Scholar 

  99. Schalling M, Stieg PE, Lindquist C, Goldstein M, Hökfelt T (1989) Rapid increase in enzyme and peptide mRNA in sympathetic ganglia after electrical stimulation in humans. Proc Natl Acad Sci USA 86:4302–4305

    Article  PubMed  CAS  Google Scholar 

  100. Landry M, Hökfelt T (1998) Subcellular localization of preprogalanin messenger RNA in perikarya and axons of hypothalamo-posthypophyseal magnocellular neurons: an in situ hybridization study. Neuroscience 84:897–912

    Article  PubMed  CAS  Google Scholar 

  101. Mongeau R, Blier P, de Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Rev 23:145–195

    Article  PubMed  CAS  Google Scholar 

  102. Wilkinson LO, Jacobs BL (1988) Lack of response of serotonergic neurons in the dorsal raphe nucleus of freely moving cats to stressful stimuli. Exp Neurol 101:445–457

    Article  PubMed  CAS  Google Scholar 

  103. Takase LF, Nogueira MI, Bland ST, Baratta M, Watkins LR, Maier SF, Fornal CA, Jacobs BL (2005) Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behav Brain Res 162:299–306

    Article  PubMed  CAS  Google Scholar 

  104. Abumaria N, Rygula R, Hiemke C, Fuchs E, Havemann-Reinecke U, Ruther E, Flugge G (2007) Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. Eur Neuropsychopharmacol 17:417–429

    Article  PubMed  CAS  Google Scholar 

  105. Martinez M, Phillips PJ, Herbert J (1998) Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. Eur J Neurosci 10:20–33

    Article  PubMed  CAS  Google Scholar 

  106. Takase LF, Nogueira MI, Baratta M, Bland ST, Watkins LR, Maier SF, Fornal CA, Jacobs BL (2004) Inescapable shock activates serotonergic neurons in all raphe nuclei of rat. Behav Brain Res 153:233–239

    Article  PubMed  Google Scholar 

  107. Mahoney SA, Hosking R, Farrant S, Holmes FE, Jacoby AS, Shine J, Iismaa TP, Scott MK, Schmidt R, Wynick D (2003) The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons. J Neurosci 23:416–421

    PubMed  CAS  Google Scholar 

  108. Mazarati A, Lu X, Kilk K, Langel U, Wasterlain C, Bartfai T (2004) Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. Eur J Neurosci 19:3235–3244

    Article  PubMed  Google Scholar 

  109. Pirondi S, Fernandez M, Schmidt R, Hökfelt T, Giardino L, Calza L (2005) The galanin-R2 agonist AR-M1896 reduces glutamate toxicity in primary neural hippocampal cells. J Neurochem 95:821–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. E. Kuteeva is supported by a post-doctoral fellowship from the Swedish Brain Foundation. This work was supported by The Swedish Research Council (11588, 2887), The Marianne and Marcus Wallenberg Foundation, Wallenberg Consortium North, an EC Grant (NEWMOOD; LHSM-CT-2003-503474), The Swedish Brain Foundation, Karolinska Institutet Funds, Svenska Lundbeckstiftelsen, Stiftelsen Goljes Minne and Stiftelsen Ragnhild och Einar Lundströms Minne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ove Ögren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Kuteeva, E., Hökfelt, T., Wardi, T., Ögren, S.O. (2010). Galanin, Galanin Receptor Subtypes and Depression-Like Behaviour. In: Hökfelt, T. (eds) Galanin. Experientia Supplementum, vol 102. Springer, Basel. https://doi.org/10.1007/978-3-0346-0228-0_12

Download citation

Publish with us

Policies and ethics