Skip to main content

Clustering by Direct Optimization of the Medoid Silhouette

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2022)

Abstract

The evaluation of clustering results is difficult, highly dependent on the evaluated data set and the perspective of the beholder. There are many different clustering quality measures, which try to provide a general measure to validate clustering results. A very popular measure is the Silhouette. We discuss the efficient medoid-based variant of the Silhouette, perform a theoretical analysis of its properties, and provide two fast versions for the direct optimization. We combine ideas from the original Silhouette with the well-known PAM algorithm and its latest improvements FasterPAM. One of the versions guarantees equal results to the original variant and provides a run speedup of \(O(k^2)\). In experiments on real data with 30000 samples and k = 100, we observed a 10464\(\times \) speedup compared to the original PAMMEDSIL algorithm.

Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) – project number 124020371 – within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis” project A2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman, M., Ben-David, S.: Measures of clustering quality: a working set of axioms for clustering. In: Advances in Neural Information Processing Systems (NIPS 2008), pp. 121–128 (2008). https://proceedings.neurips.cc/paper/2008/hash/beed13602b9b0e6ecb5b568ff5058f07-Abstract.html

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46(1), 243–256 (2013). https://doi.org/10.1016/j.patcog.2012.07.021

    Article  Google Scholar 

  3. Batool, F., Hennig, C.: Clustering with the average silhouette width. Comput. Stat. Data Anal. 158, 107190 (2021). https://doi.org/10.1016/j.csda.2021.107190

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonner, R.E.: On some clustering techniques. IBM J. Res. Devel. 8(1), 22–32 (1964). https://doi.org/10.1147/rd.81.0022

    Article  MATH  Google Scholar 

  5. Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recognit. 40(3), 807–824 (2007). https://doi.org/10.1016/j.patcog.2006.06.026

    Article  MATH  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, KDD’96, pp. 226–231 (1996). https://dl.acm.org/doi/10.5555/3001460.3001507

  7. Estivill-Castro, V.: Why so many clustering algorithms – a position paper. SIGKDD Explor. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575

    Article  Google Scholar 

  8. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Statistical Data Analysis Based on the \(L_1\) Norm and Related Methods. North-Holland (1987)

    Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Clustering large applications (program CLARA). In: Finding Groups in Data. Wiley (1990). https://doi.org/10.1002/9780470316801.ch3

  10. Klein, A., et al.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). https://doi.org/10.1016/j.cell.2015.04.044

    Article  Google Scholar 

  11. Kleinberg, J.: An impossibility theorem for clustering. In: Advances in Neural Information Processing Systems (NIPS 2002), vol. 15, pp. 463–470 (2002). https://papers.nips.cc/paper/2002/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html

  12. Kolodziejczyk, A., et al.: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471–485 (2015). https://doi.org/10.1016/j.stem.2015.09.011

    Article  Google Scholar 

  13. Kriegel, H.-P., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: are we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2016). https://doi.org/10.1007/s10115-016-1004-2

    Article  Google Scholar 

  14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  15. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 1–21 (2017). https://doi.org/10.1145/3068335

    Article  MathSciNet  Google Scholar 

  16. Schubert, E., Hess, S., Morik, K.: The relationship of DBSCAN to matrix factorization and spectral clustering. In: Lernen, Wissen, Daten, Analysen (2018)

    Google Scholar 

  17. Schubert, E., Lenssen, L.: Fast k-medoids clustering in Rust and Python. J. Open Source Softw. 7(75), 4183 (2022). https://doi.org/10.21105/joss.04183

    Article  Google Scholar 

  18. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 171–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_16

    Chapter  Google Scholar 

  19. Schubert, E., Rousseeuw, P.J.: Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Inf. Syst. 101, 101804 (2021). https://doi.org/10.1016/j.is.2021.101804

  20. Van der Laan, M., Pollard, K., Bryan, J.: A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 73(8), 575–584 (2003). https://doi.org/10.1080/0094965031000136012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Lenssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenssen, L., Schubert, E. (2022). Clustering by Direct Optimization of the Medoid Silhouette. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17849-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17848-1

  • Online ISBN: 978-3-031-17849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics