Skip to main content

Heterogeneous Infrastructure for Cooperative Driving of Automated and Non-automated Connected Vehicles

  • Conference paper
  • First Online:
Smart Cities, Green Technologies and Intelligent Transport Systems (SMARTGREENS 2019, VEHITS 2019)

Abstract

Automated driving is an active topic of research, while first results have already found their way into productive use. Nonetheless, nearly all of today’s vehicles are still non-automated. Most modern vehicles, however, are equipped with communication capabilities. Hence, combining these two developments and enabling sophisticated cooperative maneuvers is an important step in the development of Intelligent Transport System (ITS). In this work, we describe a heterogeneous architecture that enables connected vehicles to access ITS services both via a mobile communication system and via the road-side infrastructure. The introduced ITS is designed to realize cooperative maneuvers in mixed traffic scenarios using heterogeneous cloud infrastructure systems. This work shows the Automated Connected Vehicle (ACV) concept used and the human factors while driving an ACV as well as driving a Non-Automated Connected Vehicle (NACV) that interacts with an ACV. Furthermore, we show that the system works well in real traffic scenarios by presenting insights of demonstrations.

Supported by project HarmonizeDD funded by the Federal Ministry of Transport and Digital Infrastructure under the grant 16AVF1024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 5GAA: 5G Automotive Association project page (2018). https://5gaa.org. Accessed 20 Feb 2019

  2. Auerswald, R., et al.: Cooperative driving in mixed traffic with heterogeneous communications and cloud infrastructure. In: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, pp. 95–105. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007682900950105

  3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Intl. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)

    Article  Google Scholar 

  4. Bradaï, B., Garnault, A., Picron, V., Gougeon, P.: A green light optimal speed advisor for reduced CO2 Emissions. In: Langheim, J. (ed.) Energy Consumption and Autonomous Driving. LNM, pp. 141–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19818-7_15

    Chapter  Google Scholar 

  5. Brooke, J.: Sus-a quick and dirty usability scale. Usability Eval. Ind. 189, 194 , 4–7 (1996)

    Google Scholar 

  6. C-ITS Platform: Final report. Technical report, C-ITS Platform, January 2016. Accessed 12 Feb 2019

    Google Scholar 

  7. Cecchini, G., Bazzi, A., Masini, B.M., Zanella, A.: Performance comparison between IEEE 802.11p and LTE-V2V in-coverage and out-of-coverage for cooperative awareness. In: 2017 IEEE Vehicular Networking Conference (VNC), pp. 109–114, November 2017. https://doi.org/10.1109/VNC.2017.8275637

  8. CEN/TC 278: Intelligent transport systems - DATEX II data exchange specifications for traffic management and information - Part 1: Context and framework. Standard (2018)

    Google Scholar 

  9. Elbanhawi, M., Simic, M., Jazar, R.: In the passenger seat: investigating ride comfort measures in autonomous cars. IEEE Intell. Transp. Syst. Mag. 7(3), 4–17 (2015). https://doi.org/10.1109/MITS.2015.2405571

    Article  Google Scholar 

  10. ETSI EN 302 636-4-1 V1.3.2 (2017–08) Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality. Standard, ETSI, August 2017

    Google Scholar 

  11. ETSI EN 302 636-5-1 V2.1.1 (2017–08) Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 5: Transport Protocols; Sub-part 1: Basic Transport Protocol. Standard, ETSI, August 2017

    Google Scholar 

  12. ETSI EN 302 637–2 V1.3.2 (2014–11) Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. Standard, ETSI, November 2014

    Google Scholar 

  13. Festag, A.: Cooperative intelligent transport systems standards in Europe. IEEE Commun. Mag. 52(12), 166–172 (2014). https://doi.org/10.1109/MCOM.2014.6979970

    Article  Google Scholar 

  14. Fritzsche, R., Festag, A.: Reliability maximization with location-based scheduling for cellular-v2x communications in highway scenarios. In: 2018 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST), pp. 1–5, October 2018. https://doi.org/10.1109/ITST.2018.8566935

  15. Google: gRPC project page (2018). https://grpc.io. Accessed 23 Jan 2018

  16. Hameed Mir, Z., Filali, F.: LTE and IEEE 802.11p for vehicular networking: a performance evaluation. EURASIP J. Wireless Commun. Netw. 2014(1), 89 (2014). https://doi.org/10.1186/1687-1499-2014-89

    Article  Google Scholar 

  17. Hart, S.G.: Nasa-task load index (nasa-tlx); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage publications Sage CA. Los Angeles, CA (2006)

    Google Scholar 

  18. Hobert, L., Festag, A., Llatser, I., Altomare, L., Visintainer, F., Kovacs, A.: Enhancements of v2x communication in support of cooperative autonomous driving. IEEE Commun. Mag. 53(12), 64–70 (2015). https://doi.org/10.1109/MCOM.2015.7355568

    Article  Google Scholar 

  19. ISO/IEC 20922:2016 Information technology - Message Queuing Telemetry Transport (MQTT) v3.1.1. Standard, ISO, June 2016

    Google Scholar 

  20. Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cogn. Ergonomics 4(1), 53–71 (2000)

    Article  Google Scholar 

  21. Kloeppel, M., Grimm, J., Strobl, S., Auerswald, R.: Performance evaluation of GLOSA-algorithms under realistic traffic conditions using C2I-communication. In: Nathanail, E.G., Karakikes, I.D. (eds.) Data Analytics: Paving the Way to Sustainable Urban Mobility. CSUM 2018. Advances in Intelligent Systems and Computing, vol. 879, pp. 44–52. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-02305-8_6

  22. Krimmling, J.: Das Dresdner Verkehrsmanagementsystem VAMOS. In: Sandrock, M., Riegelhuth, G. (eds.) Verkehrsmanagementzentralen in Kommunen: Eine vergleichende Darstellung, pp. 157–197. Springer Fachmedien Wiesbaden, Wiesbaden (2014)

    Chapter  Google Scholar 

  23. Kulmala, R., Rämä, P.: Definition of behavioural adaptation. In: Rudin-Brown, C., Jamson, S. (eds.) Behavioural adaptation and road safety : theory, evidence, and action, pp. 11–22. Boca Raton, Florida CRC Press, June 2013. https://doi.org/10.1201/b14931-5. http://alltitles.ebrary.com/Doc?id=10798605. formerly CIP

  24. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004). https://doi.org/10.1518/hfes.46.1.50_30392

    Article  MathSciNet  Google Scholar 

  25. Malone, K., et al.: Deliverable d11.4. impact assessment and user perception of cooperative systems. Technical report, Drive c2x, July 2014. Accessed 23 July 2019

    Google Scholar 

  26. Nielsen, J., Clemmensen, T., Yssing, C.: Getting access to what goes on in people’s heads?: reflections on the think-aloud technique. In: Proceedings of the second Nordic conference on Human-computer interaction, pp. 101–110. ACM (2002)

    Google Scholar 

  27. Norman, D.A.: The Psychology of Everyday Things. Basic Books, United States (2013)

    Google Scholar 

  28. Payre, W., Diels, C.: Human-machine interface design development for connected and co-operative vehicle features. In: International Conference on Applied Human Factors and Ergonomics, pp. 415–422. Springer (2017)

    Google Scholar 

  29. Rad, B.B., Bhatti, H.J., Ahmadi, M.: An introduction to Docker and analysis of its performance. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 17(3), 228 (2017)

    Google Scholar 

  30. Salahuddin, M., Al-Fuqaha, A., Guizani, M., Cherkaoui, S.: RSU cloud and its resource management in support of enhanced vehicular applications. In: 2014 IEEE Globecom Workshops, GC Wkshps 2014, pp. 127–132. IEEE, December 2014. https://doi.org/10.1109/GLOCOMW.2014.7063418

  31. Schrepp, M.: User experience questionnaire handbook. all you need to know to apply the UEQ successfully in your projects (2015)

    Google Scholar 

  32. Springer, S., Schmidt, C., Schmalfuß, F.: Informationsbedarf von Nutzern konventioneller, vernetzter und automatisierter, vernetzter Fahrzeuge im urbanen Mischverkehr. In: VDI (ed.) Fahrerassistenzsysteme und automatisiertes Fahren 2018, VDI-Berichte 2335, pp. 391–406. VDI-Verlag GmbH, Düsseldorf (2018)

    Google Scholar 

  33. Statista: Connected car report 2018 (2018). https://www.statista.com/outlook/320/109/ connected-car/united-states. Accessed 20 Feb 2019

  34. Systems Technology: STISIM Drive - Scenario Definition Language (SDL). http://web.mit.edu/16.400/www/auto_sim/Help/SDL.htm. Accessed 20 Jun 2019

  35. Van Der Laan, J.D., Heino, A., De Waard, D.: A simple procedure for the assessment of acceptance of advanced transport telematics. Transp. Res. Part C: Emerging Technol. 5(1), 1–10 (1997)

    Article  Google Scholar 

  36. Wilson, J.R., Rutherford, A.: Mental models: theory and application in human factors. Hum. Factors 31(6), 617–634 (1989). https://doi.org/10.1177/001872088903100601

    Article  Google Scholar 

  37. Zhang, L.: Cooperative adaptive cruise control in mixed traffic with selective use of vehicle-to-vehicle communication. IET Intell. Transp. Syst. 12(10), 1243–1254 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klöppel-Gersdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Auerswald, R. et al. (2021). Heterogeneous Infrastructure for Cooperative Driving of Automated and Non-automated Connected Vehicles. In: Helfert, M., Klein, C., Donnellan, B., Gusikhin, O. (eds) Smart Cities, Green Technologies and Intelligent Transport Systems. SMARTGREENS VEHITS 2019 2019. Communications in Computer and Information Science, vol 1217. Springer, Cham. https://doi.org/10.1007/978-3-030-68028-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68028-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68027-5

  • Online ISBN: 978-3-030-68028-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics