Skip to main content

Iterative Multi-mode Discretization: Applications to Co-clustering

  • Conference paper
  • First Online:
Discovery Science (DS 2020)

Abstract

We introduce a new concept called “Iterative Multi-Mode Discretization (IMMD)” which is a new type of efficient data sparsification that can scale up many tasks in data mining. In this paper we demonstrate the application of IMMD in co-clustering, i.e. simultaneous clustering of the rows and columns in a matrix. We propose IMMD-CC, a novel co-clustering algorithm, which is developed based on IMMD. IMMD-CC has attractive properties. First, its time complexity is linear, so it can be used in large-scale problems. In addition, IMMD-CC is able to estimate the number of co-clusters automatically, and more accurate than state-of-the-art methods. We demonstrate the performance of IMMD-CC in comparison to several state-of-the-art methods on 100 data sets from a benchmark cohort, as well as 35 real-world datasets. The results show the promising potential of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charrad, M., Ben Ahmed, M.: Simultaneous clustering: a survey. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 370–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21786-9_60

    Chapter  Google Scholar 

  2. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  3. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 89–98. ACM (2003)

    Google Scholar 

  4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  5. Govaert, G., Nadif, M.: Co-clustering: Models, Algorithms and Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  6. Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)

    Article  Google Scholar 

  7. Horta, D., Campello, R.J.: Similarity measures for comparing biclusterings. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 942–954 (2014)

    Article  Google Scholar 

  8. Huang, S.Y., Sun, H.J., Huang, C.D., Chung, I.F., Su, C.H.: A modified fuzzy co-clustering (MFCC) approach for microarray data analysis. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 267–272. IEEE (2014)

    Google Scholar 

  9. Gupta, J.K., Singh, S., Verma, N.K.: MTBA: MATLAB toolbox for biclustering analysis, pp. 94–97. IEEE (2013)

    Google Scholar 

  10. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

    Article  Google Scholar 

  11. Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)

    Article  Google Scholar 

  12. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)

    Article  Google Scholar 

  13. Mounir, M., Hamdy, M.: On biclustering of gene expression data. In: 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 641–648. IEEE (2015)

    Google Scholar 

  14. Orzechowski, P., Boryczko, K., Moore, J.H.: Scalable biclustering—The future of big data exploration? GigaScience 8(7), giz078 (2019)

    Article  Google Scholar 

  15. Padilha, V.A., Campello, R.J.: A systematic comparative evaluation of biclustering techniques. BMC Bioinform. 18(1), 55 (2017)

    Article  Google Scholar 

  16. Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)

    Article  Google Scholar 

  17. Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)

    Article  Google Scholar 

  18. Prelić, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  19. Saber, H.B., Elloumi, M.: DNA microarray data analysis: a new survey on biclustering. Int. J. Comput. Biol. (IJCB) 4(1), 21–37 (2015)

    Article  Google Scholar 

  20. Shabalin, A.A., Weigman, V.J., Perou, C.M., Nobel, A.B., et al.: Finding large average submatrices in high dimensional data. Ann. Appl. Stat. 3(3), 985–1012 (2009)

    Article  MathSciNet  Google Scholar 

  21. de Souto, M.C., Costa, I.G., de Araujo, D.S., Ludermir, T.B., Schliep, A.: Clustering cancer gene expression data: a comparative study. BMC Bioinform. 9(1), 497 (2008)

    Article  Google Scholar 

  22. Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data demonstrated through systematic performance tests. Comput. Stat. Data Anal. 48(2), 235–254 (2005)

    Article  MathSciNet  Google Scholar 

  23. Xie, J., Ma, A., Fennell, A., Ma, Q., Zhao, J.: It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data. Brief. Bioinform. 1, 16 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Fanaee-T .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fanaee-T, H., Thoresen, M. (2020). Iterative Multi-mode Discretization: Applications to Co-clustering. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics