Skip to main content

Plasmons in One and Two Dimensions

  • Chapter
Springer Handbook of Surface Science

Abstract

This chapter will provide an overview of the properties of low-dimensional plasmons, discussing particularly characteristic examples. We will start with two-dimensional sheet plasmons (Sect. 19.1), concentrating on the plasmonic properties of the system most widely investigated in the recent past, graphene. Further emphasis will be given to low-dimensional plasmons coupled to other electron gases, which leads to linearization in the form of acoustic surface plasmons, but also to crossover of dimensionality, depending on plasmonic wavelengths. Finally we turn to quasi-one-dimensional systems and their corresponding plasmons, and try at the end to solve the puzzle of broad loss peaks but still fairly large plasmonic lifetimes.

Plasmons in low-dimensional systems represent an important tool for coupling energy into nanostructures and the localization of energy on the scale of only a few nanometers. Contrary to ordinary surface plasmons of metallic bulk materials, the dispersion of low-dimensional plasmons goes to zero in the long wavelength limit, thus covering a broad range of energies from terahertz to near-infrared, and from mesoscopic wavelengths down to those of just a few nanometers. Using specific, characteristic examples, we first review the properties of plasmons in two-dimensional (2-D) metallic layers from an experimental point of view. As demonstrated, tuning of their dispersion is possible by changes in charge carrier concentration in the partially filled 2-D conduction bands, but for a relativistic electron gas such as in graphene, only in the long wavelength limit. For short wavelengths, on the other hand, the dispersion turns out to be independent of the position of the Fermi level with respect to the Dirac point. A linear dispersion, seen under the latter conditions in graphene, can also be obtained in nonrelativistic electron gases by coupling between 2-D and 3-D (three-dimensional) electronic systems. As a well-investigated example, we discuss the acoustic surface plasmons in Shockley surface states, coupled with the bulk electronic system. Also, the introduction of anisotropy, e. g., by regular arrays of steps, seems to result in linearization (and to partial localization of the plasmons normal to the steps, depending on wavelengths). In quasi-one-dimensional (1-D) systems, such as arrays of gold chains on regularly stepped Si surfaces, only the dispersion is 1-D, whereas the shape and slope of the dispersion curves are dependent on the 2-D distribution of charge within each terrace and on coupling between wires on different terraces. In other words, the form of the confining quasi-1-D potential enters directly into the 1-D plasmon dispersion and offers new opportunities for tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D. Pines, D. Bohm: A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions, Phys. Rev. 85, 338 (1952)

    MathSciNet  MATH  ADS  Google Scholar 

  • D. Pines: Collective energy losses in solids, Rev. Mod. Phys. 28, 184 (1956)

    MATH  ADS  Google Scholar 

  • T. Nagao, S. Yaginuma, T. Inaoka, T. Sakurai: One-dimensional plasmon in an atomic-scale metal wire, Phys. Rev. Lett. 97(11), 116802 (2006)

    ADS  Google Scholar 

  • R.H. Ritchie: Plasma losses by fast electrons in thin films, Phys. Rev. 106, 874 (1957)

    MathSciNet  ADS  Google Scholar 

  • H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, Vol. 111 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  • A. Liebsch: Electronic excitations at metal surfaces (Plenum, New York 1997)

    Google Scholar 

  • J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique: Theory of surface plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 70, 1 (2007)

    ADS  Google Scholar 

  • W. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824 (2003)

    ADS  Google Scholar 

  • M. Jahn, S. Patze, I.J. Hidi, R. Knipper, A.I. Radu, A. Muhlig, S. Yuksel, V. Peksa, K. Weber, T. Mayerhofer, D. Cialla-May, J. Popp: Plasmonic nanostructures for surface enhanced spectroscopic methods, Analyst 141, 756–793 (2016)

    ADS  Google Scholar 

  • S. Kawata (Ed.): Near Field Optics and Surface Plasmon Polaritons, Topcis in Applied Physics, Vol. 81 (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  • J. Grzelczak, M. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán: Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 37, 1783 (2008)

    Google Scholar 

  • N.J. Halas, S. Lal, W. Chang, S. Link, P. Nordlander: Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111, 3913–3961 (2011)

    Google Scholar 

  • T. Nagao, T. Hildebrandt, M. Henzler, S. Hasegawa: Dispersion and damping of a two-dimensional plasmon in a metallic surface-state band, Phys. Rev. Lett. 86, 5747 (2001)

    ADS  Google Scholar 

  • E.P. Rugeramigabo, T. Nagao, H. Pfnür: Experimental investigation of two-dimensional plasmons in a DySi2 monolayer on Si(111), Phys. Rev. B 78, 155402 (2008)

    ADS  Google Scholar 

  • A. Politano, G. Chiarello: Plasmon modes in graphene: Status and prospect, Nanoscale 6, 10927–10940 (2014)

    ADS  Google Scholar 

  • B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, P. Hofmann, V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique, D. Farias, M. Rocca: Low energy acoustic plasmons at metal surfaces, Nature 448, 57 (2007)

    ADS  Google Scholar 

  • M. Jahn, M. Muller, M. Endlich, N. Neel, J. Kröger, V. Chis, B. Hellsing: Oxygen vibrations and acoustic surface plasmon on Be(0001), Phys. Rev. B 86, 085453 (2012)

    ADS  Google Scholar 

  • K. Pohl, B. Diaconescu, G. Vercelli, L. Vattuone, V.M. Silkin, E.V. Chulkov, P.M. Echenique, M. Rocca: Acoustic surface plasmon on Cu(111), Europhys. Lett. 90, 57006 (2010)

    ADS  Google Scholar 

  • L. Vattuone, G. Vercelli, M. Smerieri, L. Savio, M. Rocca: Acoustic surface plasmon dispersion on nanostructured Cu(111), Plasmonics 7(2), 323–329 (2012)

    Google Scholar 

  • L. Vattuone, M. Smerieri, T. Langer, C. Tegenkamp, H. Pfnür, V. Silkin, E.V. Chulkov, P.M. Echenique, M. Rocca: Correlated motion of electrons at Au(111) surface: Anomalous acoustic surface plasmon dispersion and single particle excitations, Phys. Rev. Lett. 110, 127405 (2013)

    ADS  Google Scholar 

  • S. Park, R. Palmer: Acoustic plasmon on the Au(111) surface, Phys. Rev. Lett. 105, 016801 (2010)

    ADS  Google Scholar 

  • F. Stern: Polarizability of a two-dimensional electron gas, Phys. Rev. Lett. 18, 546 (1967)

    ADS  Google Scholar 

  • A. Bill, H. Morawitz, V.Z. Kresin: Electronic collective modes and superconductivity in layered conductors, Phys. Rev. B 68, 144 (2003)

    Google Scholar 

  • V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique: Acoustic surface plasmons in the noble metals Cu, Ag, and Au, Phys. Rev. B 72, 115435 (2005)

    ADS  Google Scholar 

  • V.M. Silkin, A. Garcia-Lekue, J.M. Pitarke, E.V. Chulkov, E. Zaremba, P.M. Echenique: Novel low-energy collective excitation at metal surfaces, Europhys. Lett. 66, 260 (2004)

    ADS  Google Scholar 

  • G. Güner: Density Waves in Solids (Addison Wesley, Boston 1994)

    Google Scholar 

  • P. Snijders, H.H. Weitering: Electronic instabilities in self-assembled atom wires, Rev. Mod. Phys. 82, 307 (2010)

    ADS  Google Scholar 

  • H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa: Instability and charge density wave of metallic quantum chains on a silicon surface, Phys. Rev. Lett. 82, 4898–4901 (1999)

    ADS  Google Scholar 

  • J.N. Crain, A. Kirakosian, K.N. Altmann, C. Bromberger, S.C. Erwin, J.L. McChesney, J.-L. Lin, F.J. Himpsel: Fractional band filling in an atomic chain structure, Phys. Rev. Lett. 90, 176805 (2003)

    ADS  Google Scholar 

  • J.N. Crain, M.C. Gallagher, J.L. McChesney, M. Bissen, F.J. Himpsel: Doping of a surface band on Si(111)\(\sqrt{3}\) ×\(\sqrt{3}-\mathrm{Ag}\), Phys. Rev. B 72, 045312 (2005)

    Google Scholar 

  • C. Tegenkamp, Z. Kallassy, H. Pfnür, H.-L. Günter, V. Zielasek, M. Henzler: Switching between one and two dimensions: Conductivity of Pb-induced chain structures on Si(557), Phys. Rev. Lett. 95, 176804 (2005)

    ADS  Google Scholar 

  • C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Cui, L. Patthey, R. Matzdorf, R. Claessen: Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid, Nat. Phys. 7, 776–780 (2011)

    Google Scholar 

  • S. Wippermann, W.G. Schmidt: Entropy explains metal-insulator transition of the Si(111)-In nanowire array, Phys. Rev. Lett. 105, 126102 (2010)

    ADS  Google Scholar 

  • M. Krawiec: Structural model of the Au-induced Si(553) surface: Double Au rows, Phys. Rev. B 81(11), 115636 (2010)

    ADS  Google Scholar 

  • T. Tanikawa, I. Matsuda, T. Kanagawa, S. Hasegawa: Surface-state electrical conductivity at a metal-insulator transition on silicon, Phys. Rev. Lett. 93, 016801 (2004)

    ADS  Google Scholar 

  • C. Tegenkamp, T. Ohta, J.L. McChesney, H. Dil, E. Rotenberg, H. Pfnür, K. Horn: Coupled Pb chains on Si(557): Origin of one-dimensional conductance, Phys. Rev. Lett. 100, 076802 (2008)

    ADS  Google Scholar 

  • C. Tegenkamp, D. Lükermann, H. Pfnür, B. Slomski, G. Landolt, J.H. Dil: Fermi nesting between atomic wires with strong spin-orbit coupling, Phys. Rev. Lett. 109, 266401 (2012)

    ADS  Google Scholar 

  • C. Brand, H. Pfnür, G. Landolt, S. Muff, J.H. Dil, T. Das, C. Tegenkamp: Observation of correlated spin-orbit order in a strongly anisotropic quantum wire system, Nat. Commun. 6, 8118 (2015)

    ADS  Google Scholar 

  • T. Giamarchi: Quantum Physics in One Dimension (Clarendon, Oxford 2003)

    MATH  Google Scholar 

  • T. Nagao, S. Yaginuma, T. Inaoka, T. Sakurai, D. Jeon: Sound-wave-like collective electronic excitations in Au atom chains, J. Phys. Soc. Jpn. 76(11), 114714 (2007)

    ADS  Google Scholar 

  • E.P. Rugeramigabo, C. Tegenkamp, H. Pfnür, T. Inaoka, T. Nagao: One-dimensional plasmons in ultrathin metallic silicide wires of finite width, Phys. Rev. B 81, 165407 (2010)

    ADS  Google Scholar 

  • T. Block, C. Tegenkamp, J. Baringhaus, H. Pfnür, T. Inaoka: Plasmons in Pb nanowire arrays on Si(557): Between one and two dimensions, Phys. Rev. B 84(20), 205 (2011)

    Google Scholar 

  • U. Krieg, C. Brand, C. Tegenkamp, H. Pfnür: One-dimensional collective excitations in Ag atomic wires grown on Si(557), J. Phys. Condens. Matter 25(1), 014013 (2013)

    ADS  Google Scholar 

  • T. Inaoka: Predicted energy-loss spectrum of two-dimensional plasmons in a metallic strip monolayer on a semiconductor surface, Phys. Rev. B 71, 115305 (2005)

    ADS  Google Scholar 

  • T. Lichtenstein, J. Aulbach, J. Schäfer, R. Claessen, C. Tegenkamp, H. Pfnür: Two-dimensional crossover and strong coupling of plasmon excitations in arrays of one-dimensional atomic wires, Phys. Rev. B 93(16), 161408 (2016)

    ADS  Google Scholar 

  • C.C. Grimes, G. Adams: Observation of two-dimensional plasmons and electron-Ripplon scattering in a sheet of electrons on liquid helium, Phys. Rev. Lett. 36, 145–148 (1976)

    ADS  Google Scholar 

  • S.J. Allen, D.C. Tsui, R.A. Logan: Observation of the two-dimensional plasmon in silicon inversion layers, Phys. Rev. Lett. 38, 980–983 (1977)

    ADS  Google Scholar 

  • B. Jusserand, D. Richards, G. Fasol, G. Weimann, W. Schlapp: Single particle excitations and plasmons in a single asymmetric modulation-doped GaAs quantum well, Surf. Sci. 229, 394 (1990)

    ADS  Google Scholar 

  • J. Pischel, E. Welsch, O. Skibbe, A. Pucci: Acoustic surface plasmon on Cu(111) as an excitation in the mid-infrared range, J. Phys. Chem. C 117, 26964–26968 (2013)

    Google Scholar 

  • M. Pisarra, A. Sindona, P. Riccardi, V. Silkin, J. Pitarke: Acoustic plasmons in extrinsic free-standing graphene, New J. Phys. 16, 083003 (2014)

    ADS  Google Scholar 

  • H. Claus, A. Büssenschütt, M. Henzler: Low-energy electron diffraction with energy resolution, Rev. Sci. Instrum. 63, 2195 (1992)

    ADS  Google Scholar 

  • S. Hasegawa, N. Sato, I. Shiraki, C.L. Petersen, P. Bøggild, T.M. Hansen, T. Nagao, F. Grey: Surface-state bands on silicon -Si(111)-\(\sqrt{3}\times\sqrt{3}\)-Ag surface superstructure, Jpn. J. Appl. Phys. 39, 3815 (2000)

    Google Scholar 

  • Y. Liu, R.F. Willis: The evolution of sheet-plasmon behavior in silver monolayers on Si(111)-(\(\sqrt{3}\times\sqrt{3}\))Ag surface, Surf. Sci. 603(13), 2115–2119 (2009)

    Google Scholar 

  • A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  • Y. Wang, E.W. Plummer, K. Kempa: Foundations of plasmonics, Adv. Phys. 60(5), 799–898 (2011)

    ADS  Google Scholar 

  • F.J. Garcia de Abajo: Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135–152 (2014)

    Google Scholar 

  • N.K. Emani, A.V. Kildishev, V.M. Shalaev, A. Boltasseva: Graphene: A dynamic platform for electrical control of plasmonic resonance, Nanophotonics 4(2, SI), 214–223 (2015)

    Google Scholar 

  • V.G. Achanta: Plasmonic quasicrystals, Prog. Quantum Electron. 39, 1–23 (2015)

    Google Scholar 

  • C.-H. Chou, F.-C. Chen: Plasmonic nanostructures for light trapping in organic photovoltaic devices, Nanoscale 6(15), 8444–8458 (2014)

    ADS  Google Scholar 

  • P.C. Eng, S. Song, B. Ping: State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength, Nanophotonics 4(3), 277–302 (2015)

    Google Scholar 

  • X. Gao, T.J. Cui: Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications, Nanotechnol. Rev. 4, 239–258 (2015)

    Google Scholar 

  • Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H.C. Neto, C.N. Lau, F. Keilmann, D.N. Basov: Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487, 82–85 (2012)

    ADS  Google Scholar 

  • A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, F.H.L. Koppens: Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14, 421–425 (2015)

    ADS  Google Scholar 

  • M. Pollini: Tuning terahertz lasers via graphene plasmons, Science 351, 229–231 (2016)

    ADS  Google Scholar 

  • K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997)

    ADS  Google Scholar 

  • H.A. Atwater, A. Polman: Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205213 (2010)

    Google Scholar 

  • H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, L. Novotny: Nonlinear dark-field microscopy, Nano Lett. 10(12), 5076–5079 (2010)

    ADS  Google Scholar 

  • C. Tegenkamp, H. Pfnür, T. Langer, J. Baringhaus, H.W. Schumacher: Plasmon electron-hole resonance in epitaxial graphene, J. Phys. Condens. Matter 23(1), 012001 (2011)

    ADS  Google Scholar 

  • Y. Liu, R.F. Willis, K.V. Emtsev, T. Seyller: Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets, Phys. Rev. B 78, 201403 (2008)

    ADS  Google Scholar 

  • C. Hwang, D.A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, A. Lanzara: Fermi velocity engineering in graphene by substrate modification, Sci. Rep. 2, 590 (2012)

    Google Scholar 

  • E.H. Hwang, S. Das Sarma: Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)

    ADS  Google Scholar 

  • W. Chen, S. Chen, D.C. Qi, X.Y. Gao, A.T.S. Wee: Surface transfer p-type doping of epitaxial graphene, J. Am. Chem. Soc. 129, 10418–10422 (2007)

    Google Scholar 

  • T. Langer, H. Pfnür, C. Tegenkamp, S. Forti, K. Emtsev, U. Starke: Manipulation of plasmon electron-hole coupling in quasi-free-standing epitaxial graphene layers, New J. Phys. 14(10), 103045 (2012)

    ADS  Google Scholar 

  • H. Pfnür, T. Langer, J. Baringhaus, C. Tegenkamp: Multiple plasmon excitations in adsorbed two-dimensional systems, J. Phys. Condens. Matter 23(11), 112204 (2011)

    ADS  Google Scholar 

  • T. Langer, D. Förster, C. Busse, T. Michely, H. Pfnür, C. Tegenkamp: Sheet plasmons in buckled and undoped graphene, New J. Phys. 13, 053006 (2011)

    ADS  Google Scholar 

  • I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N'Diaye, C. Busse, T. Michely: Dirac cones and minigaps for graphene on Ir(111), Phys. Rev. Lett. 102, 056808 (2009)

    ADS  Google Scholar 

  • S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn, P.M. Sheverdyaeva, D. Pacilé, H. Brune, C. Carbone: Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice, Phys. Rev. Lett. 105, 246803 (2010)

    ADS  Google Scholar 

  • A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello: Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111), Phys. Rev. B 84, 033401 (2011)

    ADS  Google Scholar 

  • S.Y. Shin, N.D. Kim, J.G. Kim, K.S. Kim, D.Y. Noh, K.S. Kim, J.W. Chung: Control of the π-plasmon in a single layer graphene by charge doping, Appl. Phys. Lett. 99(8), 082110 (2011)

    ADS  Google Scholar 

  • A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A.H. MacDonald, E. Rotenberg: Observation of plasmarons in quasi-freestanding doped graphene, Science 328(5981), 999–1002 (2010)

    ADS  Google Scholar 

  • A.L. Walter, A. Bostwick, K.-J. Jeon, F. Speck, M. Ostler, T. Seyller, L. Moreschini, Y.J. Chang, M. Polini, R. Asgari, A.H. MacDonald, K. Horn, E. Rotenberg: Effective screening and the plasmaron bands in graphene, Phys. Rev. B 84, 085410 (2011)

    ADS  Google Scholar 

  • R.J. Koch, T. Seyller, J.A. Schaefer: Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82, 201413 (2010)

    ADS  Google Scholar 

  • R.J. Koch, S. Fryska, M. Ostler, M. Endlich, F. Speck, T. Hänsel, J.A. Schaefer, T. Seyller: Robust phonon-plasmon coupling in quasifreestanding graphene on silicon carbide, Phys. Rev. Lett. 116, 106802 (2016)

    ADS  Google Scholar 

  • V. Silkin, J.M. Pitarke, E. Chulkov, B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, P. Hofmann, D. Farıas, M. Rocca, P.M. Echenique: Band structure effects on the Be(0001) acoustic surface plasmon energy dispersion, Phys. Status Solidi (a) 205, 1307–1311 (2008)

    ADS  Google Scholar 

  • F. Theilmann, R. Matzdorf, A. Goldmann: High-resolution photoemission studies at rough Cu(111) surfaces: The influence of defect scattering and disorder-dependent dephasing processes, Surf. Sci. 420, 33–42 (1999)

    ADS  Google Scholar 

  • T. Langer, J. Baringhaus, H. Pfnür, H. Schumacher, C. Tegenkamp: Plasmon damping below the Landau regime: The role of defects in epitaxial graphene, New J. Phys. 12, 033017 (2010)

    ADS  Google Scholar 

  • J. Ortega, A. Mugarza, V. Pérez-Dieste, V. Repain, S. Rousset, A. Mascaraque: Probing wave functions at step superlattices: Confined versus propagating electrons, Mater. Sci. Eng. B 96, 154–158 (2002)

    Google Scholar 

  • M. Smerieri, L. Vattuone, L. Savio, T. Langer, C. Tegenkamp, H. Pfnür, V.M. Silkin, M. Rocca: Anisotropic dispersion and partial localization of acoustic surface plasmons on an atomically stepped surface: Au(788), Phys. Rev. Lett. 113(18), 186804 (2014)

    ADS  Google Scholar 

  • J. Yan, K. Jacobsen, K.S. Thygesen: Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study, Phys. Rev. B 86, 241404 (2012)

    ADS  Google Scholar 

  • M. Hrton, M.A. Poyli, V.M. Silkin, J. Aizpurua: Optical excitation of acoustic surface plasmons in metallic nanoparticles, Ann. Phys. 524, 751–756 (2012)

    Google Scholar 

  • J.-K. Ahn, Y.-I. Kim, K.-H. Kim, C.-J. Kang, M.C. Ri, S.-H. Kim: Simplified theory of the acoustic surface plasmons at the two-dimentional electron gas, Physica B 481, 257–261 (2016)

    ADS  Google Scholar 

  • S. Tomonaga: Remarks on Bloch's method of sound waves applied to many-fermion problems, Prog. Theor. Phys. 5, 544–569 (1950)

    MathSciNet  ADS  Google Scholar 

  • J. Luttinger: An exactly soluble model of a many-fermion system, J. Math. Phys. (N.Y.) 4, 1154 (1963)

    MathSciNet  ADS  Google Scholar 

  • J. Voit: One-dimensional Fermi liquids, Rep. Prog. Phys. 58(9), 977 (1995)

    ADS  Google Scholar 

  • R.K. Moudgil, V. Garg, K.N. Pathak: Confinement and correlation effects on plasmons in an atom-scale metallic wire, J. Phys. Condens. Matter 22(13), 135003 (2010)

    ADS  Google Scholar 

  • S. Das Sarma, W. Lai: Screening and elementary excitations in narrow-channel semiconductor microstructures, Phys. Rev. B 32(2), 1401–1404 (1985)

    ADS  Google Scholar 

  • Q. Li, S.D. Sarma: Plasmon excitations in one-dimensional lateral-quantum-wire superlattices, Phys. Rev. B 41, 10268 (1990)

    ADS  Google Scholar 

  • S. Das Sarma, E. Hwang: Dynamical response of a one-dimensional quantum-wire electron system, Phys. Rev. B 54(3), 1936–1946 (1996)

    ADS  Google Scholar 

  • U. Krieg, Y. Zhang, C. Tegenkamp, H. Pfnür: Tuning of one-dimensional plasmons by Ag-Doping in Ag-\(\sqrt{3}\)-ordered atomic wires, New J. Phys. 16, 043007 (2014)

    Google Scholar 

  • U. Krieg, T. Lichtenstein, C. Brand, C. Tegenkamp, H. Pfnür: Origin of metallicity in atomic Ag wires on Si(557), New J. Phys. 17(4), 043062 (2015)

    ADS  Google Scholar 

  • T. Inaoka: Low-dimensional plasmons in a metallic strip monolayer on a semiconductor surface, J. Phys. Soc. Jpn. 73, 2201 (2004)

    MATH  ADS  Google Scholar 

  • J. Rönspies, S. Wießell, H. Pfnür: The resistance of single atomic steps in ultrathin Pb nanowires on Si(557), Appl. Phys. A 100(4), 1007–1012 (2010)

    ADS  Google Scholar 

  • M. Czubanowski, A. Schuster, H. Pfnür, C. Tegenkamp: Temperature-driven refacetting phase transition in Pb chains on Si(557), Phys. Rev. B 77, 174108 (2008)

    ADS  Google Scholar 

  • M. Czubanowski, H. Pfnür, C. Tegenkamp: Atomic chain ordering with ultra-long periods: Pb ∕ Si(557), Surf. Sci. 603, L121–L124 (2009)

    ADS  Google Scholar 

  • C. Tegenkamp, D. Lükermann, S. Akbari, M. Czubanowski, A. Schuster, H. Pfnür: Pb nanowires on vicinal Si(111) surfaces: Effects of refacetting on transport, Phys. Rev. B 82, 205413 (2010)

    ADS  Google Scholar 

  • H. Pfnür, C. Brand, M. Jaeger, J.P. Roenspies, C. Tegenkamp: Between one and two dimensions: Pb ∕ Si(557) close to monolayer coverage, Surf. Sci. 643, 79 (2016)

    ADS  Google Scholar 

  • S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W.G. Schmidt, M. Horn-von Hoegen: Atomistic picture of charge density wave formation at surfaces, Phys. Rev. Lett. 109, 186101 (2012)

    ADS  Google Scholar 

  • J.N. Crain, J.L. McChesney, F. Zheng, M.C. Gallagher, P.C. Snijders, M. Bissen, C. Gundelach, S.C. Erwin, F.J. Himpsel: Chains of gold atoms with tailored electronic states, Phys. Rev. B 69, 125401 (2004)

    ADS  Google Scholar 

  • J. Aulbach, S.C. Erwin, R. Claessen, J. Schäfer: Spin chains and electron transfer at stepped silicon surfaces, Nano Lett. 16(4), 2698–2704 (2016)

    ADS  Google Scholar 

  • I. Barke, F. Zheng, S. Bockenhauer, K. Sell, V.V. Oeynhausen, K.H. Meiwes-Broer, S.C. Erwin, F.J. Himpsel: Coverage-dependent faceting of Au chains on Si(557), Phys. Rev. B 79(15), 155301 (2009)

    ADS  Google Scholar 

  • S.C. Erwin, F.J. Himpsel: Intrinsic magnetism at silicon surfaces, Nat. Commun. 1(5), 58 (2010)

    ADS  Google Scholar 

  • I. Song, D.-H. Oh, H.-C. Shin, S.-J. Ahn, Y. Moon, S.-H. Woo, H.J. Choi, C.-Y. Park, J.R. Ahn: Direct momentum-resolved observation of one-dimensional confinement of externally doped electrons within a single subnanometer-scale wire, Nano Lett. 15(1), 281–288 (2015)

    ADS  Google Scholar 

  • J. Aulbach, J. Schäfer, S.C. Erwin, S. Meyer, C. Loho, J. Settelein, R. Claessen: Evidence for long-range spin order instead of a Peierls transition in Si(553)-Au chains, Phys. Rev. Lett. 111, 137203 (2013)

    ADS  Google Scholar 

  • T. Lichtenstein, C. Tegenkamp, H. Pfnür: Lateral electronic screening in quasi-one-dimensional plasmons, J. Phys. Condens. Matter 28, 354001 (2016)

    Google Scholar 

  • T. Inaoka, T. Nagao: Exchange-correlation effects on low-dimensional plasmons in an array of metallic quantum wires, Mater. Trans. 48(4), 718–721 (2007)

    Google Scholar 

  • F. Hötzel, K. Seino, C. Huck, O. Skibbe, F. Bechstedt, A. Pucci: Metallic properties of the Si(111)-5×2-Au surface from infrared plasmon polaritons and ab initio theory, Nano Lett. 15(6), 4155–4160 (2015)

    ADS  Google Scholar 

  • H. Ibach, D.L. Mills: Energy electron loss spectroscopy and surface vibrations (Academic Press, San Francisco 1982)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the experimental contributions of the groups in Hannover and in Genova to several parts of this work, in particular by T. Block, U. Krieg, T. Lichtenstein, L. Savio, M. Smerieri and M. Rocca. We also strongly benefited from collaborations and discussions with the theory group at DIPC, San Sebastian, Spain, in particular by the collaboration with V.M. Silkin. Financial support for this work by the Deutsche Forschungsgemeinschaft, mainly through FOR1700 and project Pf238/28, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Pfnür .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Pfnür, H., Tegenkamp, C., Vattuone, L. (2020). Plasmons in One and Two Dimensions. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_19

Download citation

Publish with us

Policies and ethics