Skip to main content

Applications of CRISPR-Cas in Ageing Research

  • Chapter
  • First Online:

Abstract

Genetic and genomic manipulation lie as the cornerstones of several important discoveries in biomedical science. For more than four decades, scientists have targeted genes and their function using molecular biology techniques in various organisms and cells, ranging from the simplest of bacteria to primates and even humans. In the last years, CRISPR-Cas technology has demonstrated to be a fast, efficient and precise method for modifying from a single nucleotide in a cell’s DNA to whole genomes. Moreover, the flexibility of this technique has allowed researchers to develop newer and improved CRISPR-based solutions to some of the most challenging questions in genetics. As many biological processes, ageing is affected by complex interactions between several genetic and epigenetic mechanisms, posing great challenges to scientists attempting to understand this phenomenon and its causes or aiming to develop treatments for age-related diseases. CRISPR-Cas showed to be a promising tool for the manipulation of gene function and regulation in traditional models of ageing, shedding light into the roles of telomeric attrition, epigenetic dysregulation and cellular senescence. Additionally, it has greatly accelerated the efficient development of novel animal and cell models for the study of those processes and ageing-related pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

Cas9:

CRISPR-associated protein 9

CRISPR:

Clustered regularly interspaced short palindromic repeat

CRISPRi:

CRISPR interference

dCas9:

Nuclease-deficient Cas9

DSB:

Double-strand break

ES:

Embryonic stem

gRNA:

Guide RNA

HDR:

Homology-directed repair

HGPS:

Hutchinson-Gilford progeria syndrome

iPSC:

Induced pluripotent stem cell

Lmna :

Lamin A gene

lncRNA:

Long non-coding RNA

miRNA:

MicroRNA

ncRNA:

Non-coding RNA

PAM:

Protospacer adjacent motif

PD:

Parkinson’s disease

SASP:

Senescence-associated secretory phenotype

TALEN:

Transcription activator-like effector nuclease

TERT:

Telomerase reverse transcriptase

ZNF:

Zinc finger nuclease

References

  1. Tacutu R, et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 2013;41:D1027–33.

    Article  CAS  PubMed  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Danna K, Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Haemophilus influenzae. Proc Natl Acad Sci. 2006;68:2913–7.

    Article  Google Scholar 

  4. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Cell. 1987;53:503–8.

    Article  Google Scholar 

  5. Orthwein A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith J. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28:3361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christian M, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:756–61.

    Article  CAS  Google Scholar 

  9. Makino K, Nakata A, Ishino Y, Amemura M, Shinagawa H. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 2016;169:5429–33.

    Google Scholar 

  10. Boyaval P, Moineau S, Romero DA, Horvath P. Against Viruses in Prokaryotes. Science. 2007;315:1709–12.

    Article  PubMed  CAS  Google Scholar 

  11. Hu JH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kleinstiver BP, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brane A, Tollefsbol T. Targeting telomeres and telomerase: studies in aging and disease utilizing CRISPR/Cas9 technology. Cells. 2019;8:186.

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang H, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering. Cell. 2013;154:1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen J. ‘Any idiot can do it.’ Genome editor CRISPR could put mutant mice in everyone’s reach. Science (80). 2016; https://doi.org/10.1126/science.aal0334.

  18. Voets O, et al. Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells. PLoS One. 2017;12:1–20.

    Article  CAS  Google Scholar 

  19. Sudou N, Taira M, Horb ME, Miller RK. Tissue-specific gene inactivation in xenopus. Genetics. 2018;208:673–86.

    Article  PubMed  CAS  Google Scholar 

  20. Tessadori F, et al. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech. 2018;11:dmm035469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Q, et al. A Huntingtin Knockin Pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell. 2018;173:989–1002.e13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tabebordbar M, et al. 483. In vivo DMD gene editing in muscles and muscle stem cells of dystrophic mice. Mol Ther. 2016;24:S191–2.

    Article  Google Scholar 

  23. Liang P, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma H, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.

    Article  CAS  PubMed  Google Scholar 

  25. Weinstein JN, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Barretina J, et al. NIH Public Access of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grobarczyk B, Franco B, Hanon K, Malgrange B. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Rev Rep. 2015;11:774–87.

    Article  CAS  PubMed  Google Scholar 

  28. Schumann K, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci. 2015;112:10437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lou K, et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 2019;12:eaaw9450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su S, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:1–14.

    Article  CAS  Google Scholar 

  31. Cyranoski D. CRISPR gene editing tested in a person. Nature. 2016;539:479.

    Article  CAS  PubMed  Google Scholar 

  32. Vertex Pharmaceuticals Incorporated. CRISPR therapeutics and vertex announce FDA fast track designation for CTX001 for the treatment of beta thalassemia. Press Release. 2019.

    Google Scholar 

  33. Erwei Z, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 2019;126:21.

    Google Scholar 

  34. Pavlov YI, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. 2019;8:647–56.

    Google Scholar 

  35. The National Academies of Sciences Engineering and Medicine. Committee on Human Gene Editing: scientific, medical, and ethical considerations. 2017. https://doi.org/10.17226/24623

  36. Burtner CR, Kennedy BK. Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol. 2010;11:567–78.

    Article  CAS  PubMed  Google Scholar 

  37. Vidak S, Foisner R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol. 2016;145:401–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osorio FG, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011;3:106ra107.

    Article  PubMed  CAS  Google Scholar 

  39. Eriksson M, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18:595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gordon LB, Rothman FG, López-Otín C, Misteli T. Progeria: a paradigm for translational medicine. Cell. 2014;156:400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford Progeria Syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18–29.

    Article  CAS  PubMed  Google Scholar 

  43. Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun. 2017;8:328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Beyret E, et al. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nat Med. 2019;25:419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santiago-Fernández O, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat Med. 2019;25:423–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science (80). 2006;312:1059–63.

    Article  CAS  Google Scholar 

  47. Genade T, et al. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell. 2005;4:223–33.

    Article  CAS  PubMed  Google Scholar 

  48. Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish: Nothobranchius furzeri. Aging Cell. 2006;5:275–8.

    Article  CAS  PubMed  Google Scholar 

  49. Di Cicco E, Tozzini ET, Rossi G, Cellerino A. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol. 2011;46:249–56.

    Article  PubMed  Google Scholar 

  50. Terzibasi E, et al. Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell. 2009;8:88–99.

    Article  CAS  PubMed  Google Scholar 

  51. Hartmann N, et al. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mech Ageing Dev. 2009;130:290–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lee HW, Gottlieb GJ, Horner JW, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–74.

    Article  CAS  PubMed  Google Scholar 

  53. Harel I, et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell. 2015;160:1013–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nugent CI, Lundblad V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 1998;12:1073–85.

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen THD, et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature. 2018;557:190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cohen SB, et al. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315:1850–3.

    Article  CAS  PubMed  Google Scholar 

  57. Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017;216:875–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Carneiro MC, et al. Short telomeres in key tissues initiate local and systemic aging in Zebrafish. PLoS Genet. 2016;12:e1005798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany. NY). 2016;8:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flores I, Cayuela ML, Blasco MA. Molecular biology: effects of telomerase and telomere length on epidermal stem cell behavior. Science (80). 2005;309:1253–6.

    Article  CAS  Google Scholar 

  61. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8:703–13.

    Article  CAS  PubMed  Google Scholar 

  62. Ullah M, Sun Z. Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol Ser A. 2018; https://doi.org/10.1093/gerona/gly261.

  63. Harley CB, Vaziri H, Counter CM, Allsopp RC. The telomere hypothesis of cellular aging. Exp Gerontol. 1992;27:375–82.

    Article  CAS  PubMed  Google Scholar 

  64. Duan J, et al. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol. 2018;19:192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mao P, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim H, et al. CRISPR-Cas9 mediated telomere removal leads to mitochondrial stress and protein aggregation. Int J Mol Sci. 2017;18:2093.

    Article  PubMed Central  CAS  Google Scholar 

  67. Beishline K, et al. CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nat Commun. 2017;8:2114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Schmidt JC, Zaug AJ, Cech TR. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell. 2016;166:1188–1197.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt JC, Zaug AJ, Kufer R, Cech TR. Dynamics of human telomerase recruitment depend on template- telomere base pairing. Mol. Biol. Cell. 2018;29:mbc.E17-11-0637.

    Article  Google Scholar 

  70. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298–305.

    Article  CAS  PubMed  Google Scholar 

  71. Migliaccio E, et al. The p66(shc) adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–13.

    Article  CAS  PubMed  Google Scholar 

  72. Ruggiero C, et al. High basal metabolic rate is a risk factor for mortality: the Baltimore Longitudinal Study of Aging. J Gerontol – Ser A Biol Sci Med Sci. 2008;63:698–706.

    Article  Google Scholar 

  73. Westendorp RGJ, Kirkwood TBL. Human longevity at the cost of reproductive success. Nature. 1998;396:743–6.

    Article  CAS  PubMed  Google Scholar 

  74. Xie N, Zhou Y, Sun Q, Tang B. Novel epigenetic techniques provided by the CRISPR/Cas9 system. Stem Cells Int. 2018;2018:7834175.

    PubMed  PubMed Central  Google Scholar 

  75. Voigt P, Reinberg D. Epigenome editing. Nat Biotechnol. 2013;31:1097–9.

    Article  CAS  PubMed  Google Scholar 

  76. Cheng Y, Xie N, Jin P, Wang T. DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct. 2015;33:161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu S, Wu H, Zhang H, Lian CG, Lu Q. DNA methylation/hydroxymethylation in melanoma. Oncotarget. 2017;8:78163–73.

    PubMed  PubMed Central  Google Scholar 

  78. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Enríquez P. Focus: epigenetics: CRISPR-mediated epigenome editing. Yale J Biol Med. 2016;89:471.

    PubMed  PubMed Central  Google Scholar 

  80. Hu J, et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 2014;42:4375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hilton IB, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amabile A, et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell. 2016;167:219–232.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fu Y, et al. CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun. 2016;7:11707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen B, et al. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 2016;44:e75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Xiao A, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41:e141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ho TT, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 2015;43:e17.

    Article  PubMed  CAS  Google Scholar 

  87. Chang H, et al. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6:22312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol. 2010;5:99–118.

    Article  CAS  Google Scholar 

  89. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19:439–53.

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez-Meljem JM, et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun. 2017; https://doi.org/10.1038/s41467-017-01992-5.

  91. Baker DJ, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu X, et al. A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging (Albany, NY). 2019;11:4011–31.

    Article  CAS  Google Scholar 

  93. Wang L, et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep. 2017;21:773–83.

    Article  CAS  PubMed  Google Scholar 

  94. Han R, et al. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biol. 2018;19:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tang H, et al. Single senescent cell sequencing reveals heterogeneity in senescent cells induced by telomere erosion. Protein Cell. 2019;10:370–5.

    Article  PubMed  Google Scholar 

  96. Hernandez-Segura A, et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652–2660.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu L, Lau YS, Gao Y, Li H, Han R. Life-long {AAV}-Mediated {CRISPR} genome editing in dystrophic heart improves cardiomyopathy without causing serious lesions in mdx mice. Mol Ther. 2019; https://doi.org/10.1016/j.ymthe.2019.05.001.

  98. Suzuki K, et al. In vivo genome editing via {CRISPR}/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carroll KJ, et al. A mouse model for adult cardiac-specific gene deletion with {CRISPR}/Cas9. Proc Natl Acad Sci USA. 2016;113:338–43.

    Article  CAS  PubMed  Google Scholar 

  100. Ishizu T, et al. Targeted genome replacement via homology-directed repair in non-dividing cardiomyocytes. Sci Rep. 2017;7:9363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dorado B, et al. Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov. 2019;5:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Paquet D, et al. Efficient introduction of specific homozygous and heterozygous mutations using {CRISPR}/Cas9. Nature. 2016;533:125–9.

    Article  CAS  PubMed  Google Scholar 

  103. Ortiz-Virumbrales M, et al. {CRISPR}/Cas9-Correctable mutation-related molecular and physiological phenotypes in {iPSC}-derived Alzheimer’s {PSEN2} {N141I} neurons. Acta Neuropathol. Commun. 2017;5:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. György B, et al. {CRISPR}/Cas9 mediated disruption of the Swedish {APP} allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids. 2018;11:429–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Park H, et al. In vivo neuronal gene editing via {CRISPR}-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.

    Article  CAS  PubMed  Google Scholar 

  106. Sun J, et al. {CRISPR}/Cas9 editing of {APP} C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen Y, et al. Engineering synucleinopathy-resistant human dopaminergic neurons by {CRISPR}-mediated deletion of the {SNCA} gene. Eur J Neurosci. 2019;49:510–24.

    Article  PubMed  Google Scholar 

  108. Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell. Mol. Life Sci. 2015;72:1175–84. https://doi.org/10.1007/s00018-014-1744-7.

  109. Wang X, Cao C, Huang J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep. 2016;6:20620. https://doi.org/10.1038/srep20620.

  110. Zhu X, Zhong Y, Ge Y, et al. CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in α-Synuclein Causing Parkinson’s Disease. Sci Rep. 2018;8:12420. https://doi.org/10.1038/s41598-018-30436-3.

  111. Chen YC, Farzadfard F, Gharaei N, Chen WCW, Cao J, Lu TK. Randomized CRISPR-Cas Transcriptional Perturbation Screening Reveals Protective Genes against Alpha-Synuclein Toxicity. Mol Cell. 2017;68(1):247–57.e5. https://doi.org/10.1016/j.molcel.2017.09.014.

  112. Pluvinage JV, et al. {CD22} blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JMGM is part of the Translational OMICS Strategic Focus Group at Tecnologico de Monterrey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Mario Gonzalez-Meljem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haston, S., Pozzi, S., Gonzalez-Meljem, J.M. (2020). Applications of CRISPR-Cas in Ageing Research. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_11

Download citation

Publish with us

Policies and ethics