Skip to main content

Abstract

As a consequence of human activities in Antarctica, the use of fuels (for transportation and energy production), waste incineration, sewage production, and accidental oil spills are considered the main sources of anthropogenic contaminants in this extremely cold environment. Also, heavy metals, antibiotics, pesticides, and other persistent pollutants can reach the Antarctic continent through aerial transportation and marine currents. Nevertheless, Antarctica is one of the best places when looking for cold-adapted fungi with bioremediation abilities. The focus of this book chapter is the study of yeasts isolated from Antarctica and their possible use for bioremediation. Special attention is given to two groups: firstly, yeasts able to assimilate phenol and tolerate all tested heavy metal, as they could be valuable as inoculant for wastewater treatment in cold environments, and secondly, yeasts able to assimilate n-hexadecane and produce lipase and esterase, as these enzymes are related with the bioremediation of aliphatic hydrocarbons. One selected yeast, Pichia caribbica, is able to assimilate several n-alkanes and diesel fuel and also produce lipase and esterase. These combined with its high level of biomass production and the extended exponential growth phase make it a promising tool for cold environment biotechnological purposes in the field of cold enzyme production and oil spill bioremediation as well. This review provides an insight into the analysis of psychrophilic/psychrotolerant pollutant-degrading yeast isolated from a peculiar cold and isolated region: Antarctica. Next step should be focused on in situ experimentation in Antarctica, with the aim to make human presence there as imperceptible as possible and to maintain the primeval characteristics of its biodiversity and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24(5):308–313

    Article  Google Scholar 

  • ATCM (1991) Antarctic treaty consultative meeting. http://www.ats.aq/e/ep.htm

  • Alexander M (1999) Biodegradation and bioremediation. Gulf Professional Publishing, Houston Texas, USA, p 503

    Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(1-3):212–226

    Article  CAS  Google Scholar 

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1(2):219–234

    CAS  Google Scholar 

  • Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24(5):699–709

    Article  Google Scholar 

  • Bowman N, Patel P, Sanchez S, Xu W, Alsaffar A, Tiquia-Arashiro SM (2018) Lead-Resistant bacteria from Saint Clair River sediments and Pb removal in aqueous solutions. Appl Microbiol Biotechnol 102:2391–2398

    Article  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241

    Article  CAS  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R et al (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 211–227

    Chapter  Google Scholar 

  • Connel L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  Google Scholar 

  • Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS (2008) Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil. Microb Ecol 55:173–183

    Article  CAS  Google Scholar 

  • Corsolini S (2009) Industrial contaminants in Antarctic biota. J Chromatogr A 1216:598–612

    Article  CAS  Google Scholar 

  • Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2007) Distribution pattern of PAHs in soil and surface marine sediments near Jubany Station (Antarctica). Possible role of permafrost as a low-permeability barrier. Sci Total Environ 383:193–204

    Article  CAS  Google Scholar 

  • Curtosi A, Pelletier E, Vodopivez C, St Louis R, Mac Cormack WP (2010) Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch Environ Contam Toxicol 59(4):582–592

    Article  CAS  Google Scholar 

  • de Jesús HE, Peixoto RS, Rosado AS (2015) Bioremediation in Antarctic soils. J Pet Environ Biotechnol 6(248):2

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:13

    Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517

    Article  Google Scholar 

  • Fernández PM, Cabral ME, Delgado OD, Fariña JI, Figueroa LIC (2013) Textile dye polluted waters as an unusual source for selecting chromate-reducing yeasts through Cr(VI)-enriched microcosms. Int Biodeter Biodegr 79:28–35

    Article  Google Scholar 

  • Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21(3):445–457

    Article  Google Scholar 

  • Hamid B, Rana RS, Chauhan D, Singh P, Mohiddin FA, Sahay S, Abidi I (2014) Psychrophilic yeasts and their biotechnological applications-a review. Afr J Biotechnol 13(22):2188–2197

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1-3):1–15

    Article  CAS  Google Scholar 

  • Hassanshahian M, Emtiazi G, Kermanshahi RK, Cappello S (2010) Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil Sediment Contam 19(3):277–291

    Article  CAS  Google Scholar 

  • Joshi-Navare K, Singh PK, Prabhune AA (2014) New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. Eur J Lipid Sci Technol 116(8):1070–1079

    Article  CAS  Google Scholar 

  • Kennicutt MC II, Klein A, Montagna P, Sweet S, Wade T, Palmer T, Denoux G (2010) Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ Res Lett 5(3):034010

    Article  Google Scholar 

  • Lo Giudice A, Casella P, Bruni V, Michaud L (2013) Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology 22:240–250

    Article  CAS  Google Scholar 

  • Lu Z, Cai M, Wang J, Yang H, He J (2012) Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ Monit Assess 184(11):7013–7021

    Article  CAS  Google Scholar 

  • Mac Cormack WP, Ruberto LAM, Curtosi A, Vodopivez C (2011) Human impacts in the Antarctic coastal zones: the case study of hydrocarbons contamination at Potter Cove, South Shetland Islands. In: Scott Coffen-Smout (co-ed) Ocean year book, vol 25. Brill/Martinus Nijhoff Publishers, Dalhousie University, Nova Scotia, p. 141-170.

    Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13(2):257–262

    Article  Google Scholar 

  • Margesin R (2014) Bioremediation and biodegradation of hydrocarbons by cold-adapted yeasts. In: Cold-adapted yeasts. Springer, Berlin, Heidelberg, pp 465–480

    Chapter  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361

    Article  Google Scholar 

  • Martínez Álvarez LM, Balbo AL, Mac Cormack WP, Ruberto LAM (2015) Bioremediation of a petroleum hydrocarbon-contaminated Antarctic soil: optimization of a biostimulation strategy using response-surface methodology (RSM). Cold Reg Sci Technol 119:61–67

    Article  Google Scholar 

  • Martínez Álvarez LM, Ruberto LAM, Balbo AL, Mac Cormack WP (2017) Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590:194–203

    Article  Google Scholar 

  • Martorell MM, Ruberto LAM, Fernández PM, Figueroa LIC, Mac Cormack WP (2017) Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. J Basic Microbiol 57(6):504–516

    Article  CAS  Google Scholar 

  • Oest A, Alsaffar A, Fenner M, Azzopardi D, Tiquia-Arashiro SM (2018) Patterns of change in metabolic capabilities of sediment microbial communities along river and lake ecosystems. J Int Microbiol 2018:6234931. https://doi.org/10.1155/2018/6234931

    Article  Google Scholar 

  • Patel D, Gismondi R, Ali A, Tiquia-Arashiro SM (2019) Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments. Environ Technol. https://doi.org/10.1080/09593330

  • Ribeiro AP, Figueira RC, Martins CC, Silva CR, França EJ, Bícego MC, Montone RC (2011) Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 62(1):192–196

    Article  CAS  Google Scholar 

  • Rovati JI, Pajot HF, Ruberto LAM, Mac Cormack WP, Figueroa LIC (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30(11):459–470

    Article  CAS  Google Scholar 

  • Ruberto L, Dias R, Lo Balbo A, Vazquez SC, Hernandez EA, Mac Cormack WP (2009) Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol 106(4):1101–1110

    Article  CAS  Google Scholar 

  • Ruberto L, Vazquez SC, Dias RL, Hernández EA, Coria SH, Levin G, Mac Cormack WP (2010) Small-scale studies towards a rational use of bioaugmentation in an Antarctic hydrocarbon-contaminated soil. Antarct Sci 22(5):463–469

    Article  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6(1–3):127–141

    Article  Google Scholar 

  • Satchanska G, Topalova Y, Dimkov R, Groudeva V, Petrov P, Tsvetanov C, Selenska-Pobell S, Golovinsky E (2015) Phenol degradation by environmental bacteria entrapped in cryogels. Biotechnol Biotechnol Equip 29:514–521

    Article  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  CAS  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Si-Zhong Y, Hui-Jun J, Zhi W, Rui-Xia HE, Yan-Jun JI, Xiu-Mei LI, Shao-Peng YU (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    Article  Google Scholar 

  • Smykla J, Szarek-Gwiazda E, Drewnik M, Knap W, Emslie SD (2018) Natural variability of major and trace elements in non-ornithogenic Gelisols at Edmonson Point, northern Victoria Land, Antarctica. Pol Polar Res 39(1):19–50

    Google Scholar 

  • Statham TM, Stark SC, Snape I, Stevens GW, Mumford KA (2016) A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: a field assessment at Casey Station, Antarctica. Chemosphere 147:368–375

    Article  CAS  Google Scholar 

  • Suciu I, Cosma C, Todică M, Bolboacă SD, Jäntschi L (2008) Analysis of soil heavy metal pollution and pattern in central Transylvania. Int J Mol Sci 9:434

    Article  CAS  Google Scholar 

  • Thavamani P, Megharaj M, Naidu R (2012) Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823–835

    Article  CAS  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakiarobertii sp. nov., Mrakiablollopis sp. nov. and Mrakiellaniccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles–a source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  Google Scholar 

  • Tiquia-Arashiro SM (2018) Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl Microbiol Biotechnol 102:5437–5444

    Article  CAS  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016) Thermophiles and psychrophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, Cham, Switzerland, pp 89–127

    Chapter  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63(1):73–83

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  Google Scholar 

  • Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Balbo AL, Mac Cormack WP (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb Ecol 57(4):598

    Article  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:21

    Article  Google Scholar 

  • Wong KK, Quilty B, Hamzah A, Surif S (2015) Phenol biodegradation and metal removal by a mixed bacterial consortium. Biorem J 19:104–112

    Article  CAS  Google Scholar 

  • Yang S, Jin H, Wei Z, He R (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    Article  CAS  Google Scholar 

  • Zalar P, Gunde-Cimerman N (2014) Cold-adapted yeasts in Arctic habitats. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, Heidelberg, pp 49–74

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martorell, M.M., Ruberto, L.A.M., de Castellanos, L.I.F., Cormack, W.P.M. (2019). Bioremediation Abilities of Antarctic Fungi. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_26

Download citation

Publish with us

Policies and ethics