Skip to main content

Isolation and Culture of Bovine Embryonic Stem Cells

  • Protocol
  • First Online:
Epiblast Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1074))

Abstract

Isolation and culture of primary embryonic stem (ES) cell colonies are the first critical step towards establishment of stable ES cell lines. Here we introduce a novel method designated as “Separate and Seed” that contributes remarkably to efficient derivation of bovine primary ES cell colonies from blastocysts. The bovine ES cell colonies can self-renew to passage 10 with the growth factors bFGF and BIO. The bovine ES cells exhibit morphology typical of ES cells and express pluripotent molecular markers including Oct4, Nanog, SSEA1, SSEA4, and alkaline phosphatase (AP). These pluripotent markers may be used for the characterization of authentic bovine ES cell lines. Although continued efforts are required for improving long-term culture of bovine ES cells, this novel “Separate and Seed” method plus the growth factors bFGF and BIO provides an initial effective step that may eventually lead to the derivation of authentic bovine ES cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  3. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  PubMed  CAS  Google Scholar 

  4. Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376

    Article  PubMed  Google Scholar 

  5. Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL (2001) Toward regenerative medicine. Immunity 14:425–436

    Article  PubMed  CAS  Google Scholar 

  6. Keefer CL, Pant D, Blomberg L, Talbot NC (2007) Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 98:147–168

    Article  PubMed  CAS  Google Scholar 

  7. Talbot NC, Blomberg LA (2008) The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev 4:235–254

    Article  PubMed  CAS  Google Scholar 

  8. Nowak-Imialek M, Kues W, Carnwath JW, Niemann H (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal 17:474–497

    Article  PubMed  CAS  Google Scholar 

  9. Stice SL, Strelchenko NS, Keefer CL, Matthews L (1996) Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol Reprod 54:100–110

    Article  PubMed  CAS  Google Scholar 

  10. Strelchenko NS (1996) Bovine pluripotnent stem cells. Theriogenology 45:131–140

    Article  Google Scholar 

  11. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16:642–646

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki S, Campbell KH, Galli C, Akiyama K (2000) Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 62:470–475

    Article  PubMed  CAS  Google Scholar 

  13. Kitiyanant Y, Guocheng JS, Pavasuthipaisit K (2000) Establishment and long-term maintenance of bovine embryonic stem cell lines using mouse and bovine mixed feeder cells and their survival after cryopreservation. Sci Asia 26:81–86

    Article  Google Scholar 

  14. Mitalipova M, Beyhan Z, First NL (2001) Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3:59–67

    Article  PubMed  CAS  Google Scholar 

  15. Saito S, Sawai K, Ugai H et al (2003) Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309:104–113

    Article  PubMed  CAS  Google Scholar 

  16. Wang L, Duan E, Sung LY et al (2005) Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 73:149–155

    Article  PubMed  CAS  Google Scholar 

  17. Leal de Freitas ER, Sanches BV, Gambarini ML et al (2011) Embryonic stem-like cells derived from in vitro produced bovine blastocysts. Braz Arch Biol Technol 54:495–502

    Article  Google Scholar 

  18. Lim ML, Vassiliev I, Richings NM et al (2011) A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76:133–142

    Article  PubMed  CAS  Google Scholar 

  19. Jin M, Wu A, Dorzhin S et al (2012) Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 64:379–389

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  22. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  23. Liu H, Zhu F, Yong J, Zhang P et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  PubMed  CAS  Google Scholar 

  24. Liao J, Cui C, Chen S et al (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    Article  PubMed  CAS  Google Scholar 

  25. West FD, Terlouw SL, Kwon DJ et al (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211–1220

    Article  PubMed  CAS  Google Scholar 

  26. Ren J, Pak Y, He L et al (2011) Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 21:849–853

    Article  PubMed  CAS  Google Scholar 

  27. Sartori C, DiDomenico AI, Thomson AJ et al (2012) Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 14:8–19

    PubMed  CAS  Google Scholar 

  28. Huang B, Li T, Alonso-Gonzalez L, Gorre R et al (2011) A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6:e24501

    Article  PubMed  CAS  Google Scholar 

  29. Han X, Han J, Ding F et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512

    Article  PubMed  CAS  Google Scholar 

  30. Sumer H, Liu J, Malaver-Ortega LF et al (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    Article  PubMed  CAS  Google Scholar 

  31. Davis S, Aldrich TH, Stahl N et al (1993) LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260:1805–1808

    Article  PubMed  CAS  Google Scholar 

  32. Yoshida K, Chambers I, Nichols J et al (1994) Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech Dev 45:163–171

    Article  PubMed  CAS  Google Scholar 

  33. Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060

    Article  PubMed  CAS  Google Scholar 

  34. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  PubMed  CAS  Google Scholar 

  35. Qi X, Li TG, Hao J et al (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 101:6027–6032

    Article  PubMed  CAS  Google Scholar 

  36. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    Article  PubMed  CAS  Google Scholar 

  37. Brown S, Teo A, Pauklin S et al (2011) Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 29:1176–1185

    Article  PubMed  CAS  Google Scholar 

  38. Okita K, Yamanaka S (2006) Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 1:103–111

    Article  PubMed  CAS  Google Scholar 

  39. Miki T, Yasuda SY, Kahn M (2011) Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 7:836–846

    Article  PubMed  CAS  Google Scholar 

  40. Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  41. Besser D (2004) Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 279:45076–45084

    Article  PubMed  CAS  Google Scholar 

  42. Ying QL, Wray J, Nichols J (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  PubMed  CAS  Google Scholar 

  43. Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122

    Article  PubMed  CAS  Google Scholar 

  44. Sudheer S, Bhushan R, Fauler B et al (2012) FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev 21(16):2987–3000

    Article  PubMed  CAS  Google Scholar 

  45. Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL (2004) Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 39:100–104

    Article  PubMed  Google Scholar 

  46. Nagafuchi S, Katsuta H, Kogawa K et al (1999) Establishment of an embryonic stem (ES) cell line derived from a non-obese diabetic (NOD) mouse: in vivo differentiation into lymphocytes and potential for germ line transmission. FEBS Lett 455:101–104

    Article  PubMed  CAS  Google Scholar 

  47. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  48. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  49. Cao S, Wang F, Chen Z et al (2009) Isolation and culture of primary bovine embryonic stem cell colonies by a novel method. J Exp Zool A Ecol Genet Physiol 311(5):368–376

    Article  PubMed  Google Scholar 

  50. Liu L, Keefe DL (2007) Nuclear transfer methods to study aging. Methods Mol Biol 371:191–207

    Article  PubMed  CAS  Google Scholar 

  51. Zhao Y, Lin J, Wang L et al (2011) Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J Exp Zool A Ecol Genet Physiol 315:639–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Science and Technology China (863 plan 2010AA10A103), the National Basic Research Program of China (2009CB941000 and 2011CBA01002) and China National Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Cao, S., Wang, F., Liu, L. (2013). Isolation and Culture of Bovine Embryonic Stem Cells. In: Alberio, R. (eds) Epiblast Stem Cells. Methods in Molecular Biology, vol 1074. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-628-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-628-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-627-6

  • Online ISBN: 978-1-62703-628-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics