Skip to main content

Nanoimaging Cells Using Soft X-Ray Tomography

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen—water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer–Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larabell CA, Nugent KA (2010) Imaging cellular architecture with X-rays. Curr Opin Struct Biol 20:623–631

    Article  PubMed  CAS  Google Scholar 

  2. Leis A, Rockel B, Andrees L, Baumeister W (2009) Visualizing cells at the nanoscale. Trends Biochem Sci 34:60–70

    Article  PubMed  CAS  Google Scholar 

  3. Fagarasanu A, Fagarasanu M, Rachubinski RA (2007) Maintaining peroxisome populations: a story of division and inheritance. Annu Rev Cell Dev Biol 23:321–344

    Article  PubMed  CAS  Google Scholar 

  4. Warren G, Wickner W (1996) Organelle inheritance. Cell 84:395–400

    Article  PubMed  CAS  Google Scholar 

  5. Uchida M, Sun Y, McDermott G et al (2011) Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast 28:227–236

    Article  PubMed  CAS  Google Scholar 

  6. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  PubMed  CAS  Google Scholar 

  7. Natterer F (1986) The mathematics of computerized tomography. Wiley, New York

    Google Scholar 

  8. Larabell CA, McDermott G, Le Gros MA (2005) X-ray tomography of whole cells. Curr Opin Struct Biol 15:593–600

    Article  PubMed  Google Scholar 

  9. McDermott G, Le Gros MA, Knoechel CG, Uchida M, Larabell CA (2009) Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol 19:587–595

    Article  PubMed  CAS  Google Scholar 

  10. Uchida M, McDermott G, Wetzler M et al (2009) Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc Natl Acad Sci USA 106:19375–19380

    Article  PubMed  CAS  Google Scholar 

  11. Attwood DT (1999) Soft X-rays and extreme ultraviolet radioation: principles and applications. Cambridge University Press, New York

    Book  Google Scholar 

  12. Weiss D (2000) Computed tomography based on cryo X-ray microscopic images of unsectioned biological specimens. Georg-August University of Göttingen, Göttingen

    Google Scholar 

  13. Le Gros MA, McDermott G, Larabell CA (2005) X-ray tomography of whole cells. Curr Opin Struct Biol 15:593–600

    Article  PubMed  Google Scholar 

  14. Parkinson DY, McDermott G, Etkin LD, Le Gros MA, Larabell CA (2008) Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. J Struc Biol 162:380–386

    Article  Google Scholar 

  15. Larabell C, McDermott G, Uchida M, Knoechel C, Le Gros MA (2009) Imaging whole cells at better than 50 nm isotropic resolution with X-rays. Abst, Papers Am Chem Soc, 238

    Google Scholar 

  16. Larabell CA, Le Gros MA (2004) X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. Mol Biol Cell 15:957–962

    Article  PubMed  CAS  Google Scholar 

  17. Bertilson M, Von Hofsten O, Lindblom M, Wilhein T, Hertz H, Vogt U (2008) Compact high-resolution differential interference contrast soft X-ray microscopy. App Phys Lett 92:064104

    Article  Google Scholar 

  18. Bertilson MC, Takman PAC, Holmberg A, Vogt U, Hertz HM (2007) Laboratory arrangement for soft X-ray zone plate efficiency measurements. Rev Sci Instrum 78:026103–026101

    Article  PubMed  Google Scholar 

  19. Takman PAC, Stollberg H, Johansson GA, Holmberg A, Lindblom M, Hertz HM (2007) High-resolution compact X-ray microscopy. J Microsc 226:175–181

    Article  PubMed  CAS  Google Scholar 

  20. Bell PB, SafiejkoMroczka B (1997) Preparing whole mounts of biological specimens for imaging macromolecular structures by light and electron microscopy. Int J Imaging Syst Tech 8:225–239

    Article  Google Scholar 

  21. Quintana C (1994) Cryofixation, Cryosubstitution, Cryoembedding for Ultrastructural, Immunocytochemical and Microanalytical Studies. Micron 25:63–99

    Article  PubMed  CAS  Google Scholar 

  22. Ryan KP (1992) Cryofixation of tissues for electron-microscopy—a review of plunge cooling methods. Scanning Microsc 6:715–743

    CAS  Google Scholar 

  23. Studer D, Humbel BM, Chiquet M (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130:877–889

    Article  PubMed  CAS  Google Scholar 

  24. Le Gros MA, McDermott G, Uchida M, Knoechel CG, Larabell CA (2009) High-aperture cryogenic light microscopy. J Microsc 235:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

XM-2 and associated research is funded by the Department of Energy Office of Biological and Environmental Research Grant DE-AC02-05CH11231, and the NIH National Center for Research Resources Grant RR019664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Larabell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Parkinson, D.Y., Epperly, L.R., McDermott, G., Le Gros, M.A., Boudreau, R.M., Larabell, C.A. (2013). Nanoimaging Cells Using Soft X-Ray Tomography. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics