Skip to main content

SSB–DNA Binding Monitored by Fluorescence Intensity and Anisotropy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 922))

Abstract

Fluorescence methods have proven to be extremely useful tools for quantitative studies of the equilibria and kinetics of protein–DNA interactions. If the protein contains tryptophan (Trp), as is often the case, and there is a change in intrinsic Trp fluorescence of the protein, one can use this change in signal (quenching/enhancement) to monitor binding. One can also attach an extrinsic fluorophore to either the protein or the DNA and monitor binding due to a change in fluorescence intensity or a change in fluorescence anisotropy. Such equilibrium studies can provide important quantitative information on stoichiometries (occluded site size, number of binding sites) and energetics (affinities and cooperativities) of the interactions. This information is needed to understand the mechanisms of protein–DNA interactions. A critical aspect of such approaches for systems that have non-unity stoichiometries (e.g., a protein that binds multiple ligands) is knowledge of the relationship between the change in fluorescence signal (intensity or anisotropy) and the average extent of binding. Here we describe procedures for using fluorescence approaches to examine the stoichiometries and equilibrium binding affinities of Escherichia coli single-stranded DNA-binding protein (SSB) and Deinococcus radiodurans SSB with long polymeric ssDNA to determine an occluded site size. We also provide examples of studies of SSB binding to shorter oligonucleotides to demonstrate analysis and fitting of the data to an appropriate model (monitoring fluorescence intensity or anisotropy) to obtain quantitative estimates of equilibrium binding parameters. We emphasize that the solution conditions (especially salt concentration and type) can influence not only the binding affinity, but also the mode by which an SSB oligomer binds ssDNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wyman J, Gill SJ (1990) Bindng and linkage. University Science Books, Mill Valley, CA

    Google Scholar 

  2. Lohman TM, Overman LB (1985) Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260:3594–3603

    PubMed  CAS  Google Scholar 

  3. Bujalowski W, Lohman TM (1986) Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25:7799–7802

    Article  PubMed  CAS  Google Scholar 

  4. Bujalowski W, Overman LB, Lohman TM (1988) Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem 263:4629–4640

    PubMed  CAS  Google Scholar 

  5. Overman LB, Bujalowski W, Lohman TM (1988) Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry 27:456–471

    Article  PubMed  CAS  Google Scholar 

  6. Overman LB, Lohman TM (1994) Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions. J Mol Biol 236:165–178

    Article  PubMed  CAS  Google Scholar 

  7. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  PubMed  CAS  Google Scholar 

  8. Wei TF, Bujalowski W, Lohman TM (1992) Cooperative binding of polyamines induces the Escherichia coli single-strand binding protein-DNA binding mode transitions. Biochemistry 31:6166–6174

    Article  PubMed  CAS  Google Scholar 

  9. Lohman TM, Bujalowski W (1994) Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes. Biochemistry 33:6167–6176

    Article  PubMed  CAS  Google Scholar 

  10. Bujalowski W, Lohman TM, Anderson CF (1989) On the cooperative binding of large ligands to a one-dimensional homogeneous lattice: the generalized three-state lattice model. Biopolymers 28:1637–1643

    Article  PubMed  CAS  Google Scholar 

  11. Bujalowski W, Lohman TM (1987) Limited co-operativity in protein–nucleic acid interactions. A thermodynamic model for the interactions of Escherichia coli single strand binding protein with single-stranded nucleic acids in the “beaded,” (SSB)65 mode. J Mol Biol 195:897–907

    Article  PubMed  CAS  Google Scholar 

  12. Bujalowski W, Lohman TM (1989) Negative co-operativity in Escherichia coli single strand binding protein–oligonucleotide interactions. II. Salt, temperature and oligonucleotide length effects. J Mol Biol 207:269–288

    Article  PubMed  CAS  Google Scholar 

  13. Lohman TM, Bujalowski W (1988) Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes. Biochemistry 27:2260–2265

    Article  PubMed  CAS  Google Scholar 

  14. Bujalowski W, Lohman TM (1989) Negative co-operativity in Escherichia coli single strand binding protein–oligonucleotide interactions. I. Evidence and a quantitative model. J Mol Biol 207:249–268

    Article  PubMed  CAS  Google Scholar 

  15. Ferrari ME, Lohman TM (1994) Apparent heat capacity change accompanying a nonspecific protein–DNA interaction. Escherichia coli SSB tetramer binding to oligodeoxyadenylates. Biochemistry 33:12896–12910

    Article  PubMed  CAS  Google Scholar 

  16. Kozlov AG, Lohman TM (1999) Adenine base unstacking dominates the observed enthalpy and heat capacity changes for the Escherichia coli SSB tetramer binding to single-stranded oligoadenylates. Biochemistry 38:7388–7397

    Article  PubMed  CAS  Google Scholar 

  17. Ferrari ME, Bujalowski W, Lohman TM (1994) Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol 236:106–123

    Article  PubMed  CAS  Google Scholar 

  18. Kozlov AG, Eggington JM, Cox MM, Lohman TM (2010) Binding of the dimeric Deinococcus radiodurans single-stranded DNA binding protein to single-stranded DNA. Biochemistry 49:8266–8275

    Article  PubMed  CAS  Google Scholar 

  19. Kumaran S, Kozlov AG, Lohman TM (2006) Saccharomyces cerevisiae replication protein A binds to single-stranded DNA in multiple salt-dependent modes. Biochemistry 45:11958–11973

    Article  PubMed  CAS  Google Scholar 

  20. Dillingham MS, Tibbles KL, Hunter JL, Bell JC, Kowalczykowski SC, Webb MR (2008) Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys J 95:3330–3339

    Article  PubMed  CAS  Google Scholar 

  21. Kozlov AG, Lohman TM (2002) Stopped-flow studies of the kinetics of single-stranded DNA binding and wrapping around the Escherichia coli SSB tetramer. Biochemistry 41:6032–6044

    Article  PubMed  CAS  Google Scholar 

  22. Kozlov AG, Lohman TM (2002) Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41:11611–11627

    Article  PubMed  CAS  Google Scholar 

  23. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369:1244–1257

    Article  PubMed  CAS  Google Scholar 

  24. Kunzelmann S, Morris C, Chavda AP, Eccleston JF, Webb MR (2010) Mechanism of interaction between single-stranded DNA binding protein and DNA. Biochemistry 49:843–852.

    Google Scholar 

  25. Bujalowski W, Lohman TM (1991) Monomer-tetramer equilibrium of the Escherichia coli ssb-1 mutant single strand binding protein. J Biol Chem 266:1616–1626

    PubMed  CAS  Google Scholar 

  26. Bujalowski W, Lohman TM (1991) Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA. J Mol Biol 217:63–74

    Article  PubMed  CAS  Google Scholar 

  27. Lohman TM, Green JM, Beyer RS (1986) Large-scale overproduction and rapid purification of the Escherichia coli ssb gene product. Expression of the ssb gene under lambda PL control. Biochemistry 25:21–25

    Article  PubMed  CAS  Google Scholar 

  28. Eggington JM, Haruta N, Wood EA, Cox MM (2004) The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol 4:2

    Article  PubMed  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3 edn. Springer, New York

    Google Scholar 

  30. Birdsall B, King RW, Wheeler MR, Lewis CA Jr, Goode SR, Dunlap RB, Roberts GC (1983) Correction for light absorption in fluorescence studies of protein–ligand interactions. Anal Biochem 132:353–361

    Article  PubMed  CAS  Google Scholar 

  31. Lohman TM, Mascotti DP (1992) Nonspecific ligand-DNA equilibrium binding parameters determined by fluorescence methods. Methods Enzymol 212:424–458

    Article  PubMed  CAS  Google Scholar 

  32. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA–protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489

    Article  PubMed  CAS  Google Scholar 

  33. Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of E-coli SSB bound to ssDNA. Nat Struct Biol 7:648–652

    Article  PubMed  CAS  Google Scholar 

  34. Bujalowski W, Lohman TM (1987) A general method of analysis of ligand-macromolecule equilibria using a spectroscopic signal from the ligand to monitor binding. Application to Escherichia coli single-strand binding protein–nucleic acid interactions. Biochemistry 26:3099–3106

    Article  PubMed  CAS  Google Scholar 

  35. Lohman TM, Bujalowski W (1991) Thermodynamic methods for model-independent determination of equilibrium binding isotherms for protein–DNA interactions: spectroscopic approaches to monitor binding. Methods Enzymol 208:258–290

    Article  PubMed  CAS  Google Scholar 

  36. Bujalowski W (2006) Thermodynamic and kinetic methods of analyses of protein–nucleic acid interactions. From simpler to more complex systems. Chem Rev 106:556–606

    Article  PubMed  CAS  Google Scholar 

  37. Jezewska MJ, Bujalowski W (1996) A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions. Biochemistry 35:2117–2128

    Article  PubMed  CAS  Google Scholar 

  38. Wong CJ, Lucius AL, Lohman TM (2005) Energetics of DNA end binding by E.coli RecBC and RecBCD helicases indicate loop formation in the 3′-single-stranded DNA tail. J Mol Biol 352:765–782

    Article  PubMed  CAS  Google Scholar 

  39. Eftink MR (1997) Fluorescence methods for studying equilibrium macromolecule–ligand interactions. Methods Enzymol 278:221–257

    Article  PubMed  CAS  Google Scholar 

  40. Cantor CR, Schimmel PR (1980) Biophysical chemistry. Freeman W.H., New York

    Google Scholar 

  41. Kozlov AG, Lohman TM (2006) Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA. Biochemistry 45:5190–5205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants to T.M.L. from NIH (GM030498 and GM045948) and R.G. from NIH (GM098509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lohman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kozlov, A.G., Galletto, R., Lohman, T.M. (2012). SSB–DNA Binding Monitored by Fluorescence Intensity and Anisotropy. In: Keck, J. (eds) Single-Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 922. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-032-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-032-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-031-1

  • Online ISBN: 978-1-62703-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics