Skip to main content

Databases and Tools in Glycobiology

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

Glycans are crucial to the functioning of multicellular organisms. They may also play a role as mediators between host and parasite or symbiont. As many proteins (>50%) are posttranslationally modified by glycosylation, this mechanism is considered to be the most widespread posttranslational modification in eukaryotes. These surface modifications alter and regulate structure and biological activities/functions of proteins/biomolecules as they are largely involved in the recognition process of the appropriate structure in order to bind to the target cells. Consequently, the recognition of glycans on cellular surfaces plays a crucial role in the promotion or inhibition of various diseases and, therefore, glycosylation itself is considered to be a critical protein quality control attribute for commercial therapeutics, which is one of the fastest growing segments in the pharmaceutical industry.

With the development of glycobiology as a separate discipline, a number of databases and tools became available in a similar way to other well-established “omics.” Alleviating the recognized shortcomings of the available tools for data storage and retrieval is one of the highest priorities of the international glycoinformatics community. In the last decade, major efforts have been made, by leading scientific groups, towards the integration of a number of major databases and tools into a single portal, which would act as a centralized data repository for glycomics, equipped with a number of comprehensive analytical tools for data systematization, analysis, and comparison. This chapter provides an overview of the most important carbohydrate-related databases and glycoinformatic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3(10):863–873

    Article  PubMed  CAS  Google Scholar 

  2. Gerlach JQ, Cunningham S, Kane M et al (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38(5):1333–1336

    Article  PubMed  CAS  Google Scholar 

  3. van der Werff TJ (2003) 10 emerging technologies that will change the world. Global Future Report™. (http://www.globalfuture.com/mit-trends2003.htm)

  4. Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins. An effective strategy to optimize efficacy. BioDrugs 24(1):9–21

    Article  PubMed  Google Scholar 

  5. Arnold JN, Wormald MR, Sim RB et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  PubMed  CAS  Google Scholar 

  6. Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara C, Stuart F, Sondermann P et al (2006) The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281:5032–5036

    Article  PubMed  CAS  Google Scholar 

  8. European Medicines Agency/Committee for Medicinal Products for Human Use (2005) Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: nonclinical and clinical issues. (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003920.pdf)

  9. European Medicines Agency/Committee for Medicinal Products for Human Use (2007) Guideline on production and quality control of monoclonal antibodies and related substances. (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003073.pdf)

  10. Kemsley JN (2009) Analyzing protein drugs. Chem Eng News 87:20–23

    Article  Google Scholar 

  11. 2009 US sales and prescription information. Top 15 US pharmaceutical products by sales. (http://www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Top%2015%20Products%20by%20U.S.Sales.pdf)

  12. Amgen announces modifications to US. Prescribing information for use of erythropoiesis-stimulating agents in chronic kidney disease. (http://checkorphan.org/grid/news/treatment/amgen-announces-modifications-to-u-s-prescribing-information-for-use-of-erythropoiesis-stimulating-agents-in-chronic-kidney-disease)

  13. Erythropoiesis-stimulating agents (ESAs): Procrit, Epogen and Aranesp: drug safety communication. (http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm200391.htm)

  14. Larkin C (2011) Lipitor topped worldwide drug sales in 2010; Crestor gains most. Bloomberg. (http://www.bloomberg.com/news/2011-02-10/lipitor-topped-worldwide-drug-sales-in-2010-crestor-gains-most.html)

  15. Wood L (2011) Research and markets: this global protein therapeutics market analysis forecasts the industry to grow at a CAGR of 12% during 2011–2013. FierceBiotech. (http://www.fiercebiotech.com/press-releases/research-and-markets-global-protein-therapeutics-market-analysis-forecasts-).

  16. Lütteke T, Bohne-Lang A, Loß A et al (2006) GLYCOSCIENCES.de: an internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71R–81R

    Article  PubMed  Google Scholar 

  17. Hashimoto K, Goto S, Kawano S et al (2006) KEGG as a glycome informatics resource. Glycobiology 16(5):63R–70R

    Article  PubMed  CAS  Google Scholar 

  18. Aoki-Kinoshita KF, Ichikawa M, Ikeda S et al (2006) A web-based resource for glycome informatics. In: 17th International conference on genome informatics (GIW 2006), Yokohama Pacifico, Japan

    Google Scholar 

  19. Raman R, Venkataraman M, Ramakrishnan S et al (2006) Advancing glycomics: implementation strategies at the Consortium for Functional Glycomics. Glycobiology 16(5):82R–90R

    Article  PubMed  CAS  Google Scholar 

  20. Ranzinger R, Hergert S, Wetter T et al (2008) GlycomeDB—integration of open-access carbohydrate structure databases. BMC Bioinformatics 9:384

    Article  PubMed  Google Scholar 

  21. Ranzinger R, Hergert S, von der Lieth C-W et al (2011) GlycomeDB—A unified database for carbohydrate structures. Nucl Acids Res 39(Database Issue): D373–D376

    Google Scholar 

  22. von der Lieth C-W, Freire AA, Blank D et al (2011) EUROCarbDB: an open-access platform for glycoinformatics. Glycobiology 21(4):493–502

    Article  PubMed  Google Scholar 

  23. Sahoo SS, Thomas C, Sheth A et al (2005) GLYDE–an expressive XML standard for the representation of glycan structure. Carbohydr Res 340(18):2802–2807

    Article  PubMed  CAS  Google Scholar 

  24. Packer NH, von der Lieth C-W, Aoki-Kinoshita KF et al (2008) Frontiers in glycomics: bioinformatics and biomarkers in disease. Proteomics 8(1):8–20

    Article  PubMed  CAS  Google Scholar 

  25. Herget S, Ranzinger R, Maass K et al (2008) GlycoCT—A unifying sequence format for carbohydrates. Carbohydr Res 343(12):2162–2171

    Article  PubMed  CAS  Google Scholar 

  26. Lütteke T (2008) Web resources for the glycoscientist. Chembiochem 9:2155–2160

    Article  PubMed  Google Scholar 

  27. Pedrioli PGA, Eng JK, Hubley R et al (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466

    Article  PubMed  CAS  Google Scholar 

  28. Orchard S, Taylor CF, Hermjakob H et al (2004) Current status of proteomic standards development. Expert Rev Proteomics 1(2):179–183

    Article  PubMed  CAS  Google Scholar 

  29. Waters: innovation in separations science 2011, Dublin, Ireland, 5–6 Apr 2011

    Google Scholar 

  30. Artemenko NV, Campbell MP, Rudd PM (2010) GlycoExtractor: a web-based interface for high-throughput processing of HPLC-glycan data. J Proteome Res 9(4):2037–2041

    Article  PubMed  CAS  Google Scholar 

  31. Doubet S, Bock K, Smith D et al (1989) The complex carbohydrate structure database. Trends Biochem Sci 14(12):475–477

    Article  PubMed  CAS  Google Scholar 

  32. Doubet S, Albersheim P (1992) Letter to the Glyco-Forum: CarbBank. Glycobiology 2(6):505

    Article  PubMed  CAS  Google Scholar 

  33. Carbohydrate Databases (CarbBank/Sugabase) (http://www.boc.chem.uu.nl:8081/sugabase/databases.html).

  34. Berteaua O, Stenutz R (2004) Web resources for the carbohydrate chemist. Carbohydr Res 339:929–936

    Article  Google Scholar 

  35. McNaught AD (1997) International Union of Pure and Applied Chemistry and International Union of Biochemistry and Molecular Biology. Joint Commission on Biochemical Nomenclature. Nomenclature of carbohydrates. Carbohydr Res 297(1):1–92

    Article  PubMed  CAS  Google Scholar 

  36. Loß A, Bunsmann P, Bohne A et al (2002) SWEET-DB: an attempt to create annotated data collections for carbohydrates. Nucleic Acids Res 30(1):405–408

    Article  PubMed  Google Scholar 

  37. van Kuik JA, Vliegenthart JFG (1992) Databases of complex carbohydrates. Trends Biotechnol 10:182–185

    Article  PubMed  Google Scholar 

  38. Bohne-Lang A, Lang E, Forster T et al (2001) LINUCS: LInear Notation for Unique description of Carbohydrate Sequences. Carbohydr Res 336:1–11

    Article  PubMed  CAS  Google Scholar 

  39. Banin E, Neuberger Y, Altshuler Y et al (2002) A novel linear coder nomenclature for complex carbohydrates. Trends Glycosci Glycotechnol 14(77):127–137

    Article  CAS  Google Scholar 

  40. Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27(1):29–34

    Article  PubMed  CAS  Google Scholar 

  41. Kanehisa M, Goto S, Kawashima S (2004) The KEGG resource for deciphering the genome. Nucl Acids Res 32(Database issue): D277–D280

    Google Scholar 

  42. Hattori M, Okuno Y, Goto S et al (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125(39):11853–11865

    Article  PubMed  CAS  Google Scholar 

  43. Toukach FV, Knirel YA (2005) New database of bacterial carbohydrate structures. In: Proceedings of the XVIII international symposium on glycoconjugates, Florence, Italy. pp 216–217

    Google Scholar 

  44. Toukach PV (2011) Bacterial carbohydrate structure database 3: principles and realization. J Chem Inf Model 51(1):159–170

    Article  PubMed  CAS  Google Scholar 

  45. Ceroni A, Dell A, Haslam SM (2007) The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures. Source Code Biol Med 2:3

    Article  PubMed  Google Scholar 

  46. Maass K, Ranzinger R, Geyer H et al (2007) “Glyco-peakfinder”–de novo composition analysis of glycoconjugates. Proteomics 7(24):4435–4444

    Article  PubMed  CAS  Google Scholar 

  47. Ceroni A, Maass K, Geyer H et al (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7(4):1650–1659

    Article  PubMed  CAS  Google Scholar 

  48. Jansson PE, Kenne L, Widmalm G (1991) CASPER: a computer program used for structural analysis of carbohydrates. J Chem Inf Comput Sci 31(4):508–516

    Article  PubMed  CAS  Google Scholar 

  49. Jansson PE, Stenutz R, Widmalm G (2006) Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel web-based version of the computer program CASPER. Carbohydr Res 341(8):1003–1010

    Article  PubMed  CAS  Google Scholar 

  50. Aoki KF, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG carbohydrate matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272

    Article  PubMed  CAS  Google Scholar 

  51. Akune Y, Hosoda M, Kaiya S et al (2010) The RINGS resource for glycome informatics analysis and data mining on the web. OMICS J Integrative Biol 14(10):475–486

    Article  CAS  Google Scholar 

  52. Campbell MP, Royle L, Radcliffe CM et al (2008) GlycoBase and AutoGU: tools for HPLC-based glycan analysis. Bioinformatics 24(9):1214–1216

    Article  PubMed  CAS  Google Scholar 

  53. Harvey DJ, Merry AH, Royle L et al (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9(15):3796–3801

    Article  PubMed  CAS  Google Scholar 

  54. Royle L, Campbell MP, Radcliffe CM et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376(1):1–12

    Article  PubMed  CAS  Google Scholar 

  55. McDonald AG, Boyce S, Tipton KF (2009) ExplorEnz: the primary source of the IUBMB enzyme list. Nucl Acids Res 37(Database Issue): D593–D597. (http://www.enzyme­database.org)

    Google Scholar 

  56. McDonald AG, Tipton KF, Boyce S (2009) Tracing metabolic pathways from enzyme data. Biochim Biophys Acta 1794:1364–1371, http://www.reaction-explorer.org

    Article  PubMed  CAS  Google Scholar 

  57. Imberty A, Gerber S, Tran V et al (1990) Data-bank of 3-dimensional structures of disaccharides, a tool to build 3-D structures of oligosaccharides. Part I. Oligo-mannose type N-glycans. Glycoconjugate J 7(1):27–54

    Article  CAS  Google Scholar 

  58. Jmol: an open-source Java viewer for chemical structures in 3D. (http://www.jmol.org/)

  59. Narimatsu H (2004) Construction of a human glycogene library and comprehensive functional analysis. Glycoconjugate J 21(1):17–24

    Article  CAS  Google Scholar 

  60. Kameyama A, Kikuchi N, Nakaya S et al (2005) A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem 77(15):4719–4725

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura S, Yagi F, Totani K et al (2005) Comparative analysis of carbohydrate-binding properties of two tandem repeat-type Jacalin-related lectins, Castanea crenata agglutinin and Cycas revoluta leaf lectin. FEBS J 272(11):2784–2799

    Article  PubMed  CAS  Google Scholar 

  62. Kaji H, Saito H, Yamauchi Y et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21(6):667–672

    Article  PubMed  CAS  Google Scholar 

  63. Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2:2529–2537

    Article  PubMed  CAS  Google Scholar 

  64. Shinkawa T, Taoka M, Yamauchi Y et al (2005) STEM: a software tool for large-scale proteomic data analyses. J Proteome Res 4(5):1826–1831

    Article  PubMed  CAS  Google Scholar 

  65. Kaji H, Yamauchi Y, Takahashi N et al (2006) Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 1(6):3019–3027

    Article  PubMed  CAS  Google Scholar 

  66. Kaji H, Kamiie J, Kawakami H et al (2007) Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6(12):2100–2109

    Article  PubMed  CAS  Google Scholar 

  67. Taniguchi N, Suzuki A, Ito Y et al (2008) A database system for glycogenes (GGDB). Springer, Japan, pp 423–425

    Google Scholar 

  68. Shelikoff M, Sinskey AJ, Stephanopoulos G (1996) A modeling framework for the study of protein glycosylation. Biotechnol Bioeng 50:73–90

    Article  PubMed  CAS  Google Scholar 

  69. Umaña P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55(6):890–908

    Article  PubMed  Google Scholar 

  70. Murrell MP, Yarema KJ, Levchenko A (2004) The systems biology of glycosylation. Chembiochem 5:1334–1347

    Article  PubMed  CAS  Google Scholar 

  71. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92(6):711–728

    Article  PubMed  CAS  Google Scholar 

  72. Hossler P, Mulukutia BC, Hu W-S (2007) Systems analysis of N-glycan processing in mammalian cells. PLoS One 1(8):e713

    Article  Google Scholar 

  73. McDonald AG, Tipton KF, Stroop CJM et al (2010) GlycoForm and Glycologue: two software applications for the rapid construction and display of N-glycans from mammalian sources. BMC Res Notes 3:173, http://www.boxer.tcd.ie/gf

    Article  PubMed  Google Scholar 

  74. Laurent N, Voglmeir J, Flitsch S (2008) Glycoarrays–tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem Commun (37):4400–4412

    Article  Google Scholar 

  75. Lütteke T, Frank M, von der Lieth C-W (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339:1015–1020

    Article  PubMed  Google Scholar 

  76. Crispin M, Stuart DI, Jones Y (2007) Building meaningful models of glycoproteins. Nat Struct Mol Biol 14:354

    Article  PubMed  CAS  Google Scholar 

  77. Lütteke T, von der Lieth C-W (2004) pdb-care (PDB CArbohydrate REsidue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5:69

    Article  PubMed  Google Scholar 

  78. Hooft RWW, Vriend G, Sander C et al (1996) Errors in protein structures. Nature 381:272

    Article  PubMed  CAS  Google Scholar 

  79. Morris AL, MacArthur MW, Hutchinson EG et al (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  PubMed  CAS  Google Scholar 

  80. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  81. Ranzinger RR, Hergert S, Lütteke T et al (2009) Carbohydrate structure databases. In: Cummings RD, Pierce JM (eds) Handbook of glycomics. Academic, London, UK, pp 211–233

    Google Scholar 

  82. In proceedings: Charles Warren workshop III. 2010, Hindås, Gothenburg, Sweden, 27–30 Aug

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Keith F. Tipton from The School of Biochemistry and Immunology at Trinity College Dublin for valuable suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Rudd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Artemenko, N.V., McDonald, A.G., Davey, G.P., Rudd, P.M. (2012). Databases and Tools in Glycobiology. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics