Skip to main content

The Use of Caenorhabditis elegans to Study Progranulin in the Regulation of Programmed Cell Death and Stress Response

  • Protocol
  • First Online:
Progranulin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1806))

Abstract

The nematode Caenorhabditis elegans (C. elegans) has proven to be a powerful model organism for the study of many biological processes, with major implications for human health and disease. As progranulin is a pleiotropic, secreted protein with both cell autonomous and non-autonomous roles, a multicellular organism such as C. elegans is ideal for the investigation of its normal function and pathological effects. The C. elegans genome contains a progranulin-like gene known as pgrn-1. The nematode pgrn-1 encodes a protein with three cysteine-rich granulin domains, compared to the seven and a half granulins in the human protein. We have shown that C. elegans mutants lacking pgrn-1 appear grossly normal, but exhibit accelerated apoptotic cell engulfment as well as a stress resistance phenotype (Kao et al., Proc Natl Acad Sci U S A 108:4441–4446, 2011; Judy et al., PLoS Genet 9:e1003714, 2013). In addition, the roles of individual granulins can also be dissected in C. elegans (Salazar et al., J Neurosci 35:9315–9328, 2015). Here, we describe methods for studying apoptosis and stress response in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conradt B, Xue D (2005) Programmed cell death. WormBook

    Google Scholar 

  2. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  3. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  4. C.elegansSequencingConsortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  5. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  7. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356–369

    Article  CAS  PubMed  Google Scholar 

  9. Bargmann CI (2006) Chemosensation in C. elegans. WormBook

    Google Scholar 

  10. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  11. Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A, Bagley JA, Zhou P, de Luis A, Neukomm LJ, Cabello J et al (2011) A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A 108:4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daniel R, He Z, Carmichael KP, Halper J, Bateman A (2000) Cellular localization of gene expression for progranulin. J Histochem Cytochem 48:999–1009

    Article  CAS  PubMed  Google Scholar 

  13. Judy ME, Nakamura A, Huang A, Grant H, McCurdy H, Weiberth KF, Gao F, Coppola G, Kenyon C, Kao AW (2013) A shift to organismal stress resistance in programmed cell death mutants. PLoS Genet 9:e1003714. PMCID: PMC24068943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salazar DA, Butler VJ, Argouarch AR, Hsu TY, Mason A, Nakamura A, McCurdy H, Cox D, Ng R, Pan G et al (2015) The Progranulin cleavage products, Granulins, exacerbate TDP-43 toxicity and increase TDP-43 levels. J Neurosci 35:9315–9328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  17. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385:637–640

    Article  CAS  PubMed  Google Scholar 

  18. Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129:79–94

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Horvitz HR (1999) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59:1701s–1706s

    PubMed  CAS  Google Scholar 

  20. Metzstein MM, Horvitz HR (1999) The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 4:309–319

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez M, Snoek LB, De Bono M, Kammenga JE (2013) Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 29:367–374

    Article  CAS  PubMed  Google Scholar 

  22. Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72:4061–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Voorhies WA, Ward S (2000) Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol 203:2467–2478

    PubMed  Google Scholar 

  25. Lant B, Storey KB (2010) An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system. Int J Biol Sci 6:9–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    Article  PubMed  Google Scholar 

  27. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  28. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn 239:1282–1295

    Article  CAS  PubMed  Google Scholar 

  29. Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ (2010) Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. Dev Disabil Res Rev 16:200–218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Judy ME, Nakamura A, Huang A, Grant H, McCurdy H, Weiberth KF, Gao F, Coppola G, Kenyon C, Kao AW (2013) A shift to organismal stress resistance in programmed cell death mutants. PLoS Genet 9:e1003714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Denning DP, Hatch V, Horvitz HR (2012) Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature 488:226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gartner (2008) Germline survival and apoptosis. WormBook

    Google Scholar 

  35. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126:1011–1022

    PubMed  CAS  Google Scholar 

  36. Riddle DL, Blumenthal T, Meyer BJ, et al (1997) Programmed cell death in C. elegans. C. elegans II

    Google Scholar 

  37. Schnabel R, Hutter H, Moerman D, Schnabel H (1997) Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol 184:234–265

    Article  CAS  PubMed  Google Scholar 

  38. Possik E, Pause A (2015) Measuring oxidative stress resistance of caenorhabditis elegans in 96-well microtiter plates. J Vis Exp: JoVE

    Google Scholar 

  39. Gomez F, Monsalve GC, Tse V, Saiki R, Weng E, Lee L, Srinivasan C, Frand AR, Clarke CF (2012) Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli. BMC Microbiol 12:300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aballay A, Yorgey P, Ausubel FM (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10:1539–1542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH R21 NS082709, Consortium for Frontotemporal Dementia (CFR), Tau Consortium and Hellman Family Foundation to AWK. For strains, we thank Kaveh Ashrafi (UCSF), Cynthia Kenyon (UCSF), the Mitani Laboratory at the Tokyo Women’s Medical University (Tokyo, Japan), and the C. elegans Genetic Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee W. Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hsu, TY., Butler, V.J., Kao, A.W. (2018). The Use of Caenorhabditis elegans to Study Progranulin in the Regulation of Programmed Cell Death and Stress Response. In: Bateman, A., Bennett, H., Cheung, S. (eds) Progranulin. Methods in Molecular Biology, vol 1806. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8559-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8559-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8557-9

  • Online ISBN: 978-1-4939-8559-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics