Skip to main content

Computational Analysis of RNA–Protein Interactions via Deep Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

RNA-binding proteins (RBPs) function in all aspects of RNA processes including stability, structure, export, localization and translation, and control gene expression at the posttranscriptional level. To investigate the roles of RBPs and their direct RNA ligands in vivo, recent global approaches combining RNA immunoprecipitation and deep sequencing (RIP-seq) as well as UV-cross-linking (CLIP-seq) have become instrumental in dissecting RNA–protein interactions. However, the computational analysis of these high-throughput sequencing data is still challenging. Here, we provide a computational pipeline to analyze CLIP-seq and RIP-seq datasets. This generic analytic procedure may help accelerate the identification of direct RNA–protein interactions from high-throughput RBP profiling experiments in a variety of bacterial species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smirnov A, Förstner KU, Holmqvist E et al (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A 113:11591–11596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsvetanova NG, Klass DM, Salzman J, Brown PO (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5:pii:e12671

    Article  Google Scholar 

  3. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  4. Attaiech L, Boughammoura A, Brochier-Armanet C et al (2016) Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 113:8813–8818. https://doi.org/10.1073/pnas.1601626113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589. https://doi.org/10.1038/nrmicro2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    Article  CAS  PubMed  Google Scholar 

  7. Sittka A, Lucchini S, Papenfort K et al (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4:e1000163

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chao Y, Papenfort K, Reinhardt R et al (2012) An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31:4005–4019. https://doi.org/10.1038/emboj.2012.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riley KJ, Steitz JA (2013) The “observer effect” in genome-wide surveys of protein-RNA interactions. Mol Cell 49:601–604. https://doi.org/10.1016/j.molcel.2013.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dambach M, Irnov I, Winkler WC (2013) Association of RNAs with Bacillus subtilis Hfq. PLoS One 8:e55156. https://doi.org/10.1371/journal.pone.0055156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Torres-Quesada O, Reinkensmeier J, Schlüter JP et al (2014) Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 11(5):563–579. https://doi.org/10.4161/rna.28239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tree JJ, Granneman S, McAteer SP et al (2014) Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55:199–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilusic I, Popitsch N, Rescheneder P et al (2014) Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol 11(5):641–654. https://doi.org/10.4161/rna.29299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saadeh B, Caswell CC, Chao Y et al (2016) Transcriptome-wide identification of Hfq-associated RNAs in Brucella suis by deep sequencing. J Bacteriol 198:427–435. https://doi.org/10.1128/JB.00711-15

    Article  CAS  PubMed Central  Google Scholar 

  15. Dugar G, Svensson SL, Bischler T et al (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun 7:11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holmqvist E, Wright PR, Li L et al (2016) Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:991–1011. https://doi.org/10.15252/embj.201593360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahr T, Rusniok C, Impens F et al (2017) The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PLoS Genet 13:e1006629. https://doi.org/10.1371/journal.pgen.1006629

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chao Y, Li L, Girodat D et al (2017) In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol Cell 65:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469. https://doi.org/10.1038/nature07488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. König J, Zarnack K, Luscombe NM, Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13:77–83. https://doi.org/10.1038/nrg3141

    Article  Google Scholar 

  21. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286. https://doi.org/10.1002/wrna.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614. https://doi.org/10.1038/nbt.1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  24. Xu H, Luo X, Qian J et al (2012) FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7:e52249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Förstner KU, Vogel J, Sharma CM (2014) READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics 30:3421–3423

    Article  PubMed  Google Scholar 

  26. Westermann AJ, Förstner KU, Amman F et al (2016) Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529:496–501. https://doi.org/10.1038/nature16547

    Article  CAS  PubMed  Google Scholar 

  27. Hoffmann S, Otto C, Kurtz S et al (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502

    Article  PubMed  PubMed Central  Google Scholar 

  28. Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32:2089–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uren PJ, Bahrami-Samani E, Burns SC et al (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28:3013–3020. https://doi.org/10.1093/bioinformatics/bts569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langenberger D, Bermudez-Santana C, Hertel J et al (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301

    Article  CAS  PubMed  Google Scholar 

  31. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/PREACCEPT-8897612761307401

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen B, Yun J, Kim MS et al (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:R18

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22:445–452

    Article  CAS  PubMed  Google Scholar 

  36. Weinberg Z, Breaker RR (2011) R2R—software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dale RK, Matzat LH, Lei EP (2014) metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA. Nucleic Acids Res 42:9158–9170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165

    Article  PubMed  PubMed Central  Google Scholar 

  40. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462

    Article  CAS  PubMed  Google Scholar 

  42. Luo W, Brouwer C (2013) Pathview: an R/bioconductor package for pathway-based data integration and visualization. Bioinformatics 29:1830–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Erik Holmqvist and Andrew Camilli for critical reading and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjie Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, L., Förstner, K.U., Chao, Y. (2018). Computational Analysis of RNA–Protein Interactions via Deep Sequencing. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics