Skip to main content

Evaluating the Metabolic Impact of Hypoxia on Pancreatic Cancer Cells

  • Protocol
  • First Online:
Book cover Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

  • 2947 Accesses

Abstract

Hypoxia is frequently observed in human cancers and induces global metabolic reprogramming that includes an increase in glucose uptake and glycolysis, alterations in NAD(P)H/NAD(P)+ and intracellular ATP levels, and increased utilization of glutamine as the major precursor for fatty acid synthesis. In this chapter, we describe in detail various physiological assays that have been adopted to study the metabolic shift propagated by exposure to hypoxic conditions in pancreatic cell culture model that includes glucose uptake, glutamine uptake, and lactate release by pancreatic cancer cell lines. We have also elaborated the assays to evaluate the ratio of NAD(P)H/NAD(P)+ and intracellular ATP estimation using the commercially available kit to assess the metabolic state of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, Yu F, Johnson KR, Powers R, Hollingsworth MA, Singh PK (2012) MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A 109(34):13787–13792. https://doi.org/10.1073/pnas.1203339109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Erickson LA, Highsmith WE Jr, Fei P, Zhang J (2015) Targeting the hypoxia pathway to treat pancreatic cancer. Drug Des Devel Ther 9:2029–2031. https://doi.org/10.2147/DDDT.S80888

    PubMed  PubMed Central  Google Scholar 

  3. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975. https://doi.org/10.1038/nrc2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamiya Mehla, Pankaj K. Singh, (2014) MUC1: A novel metabolic master regulator. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1845(2):126–135

    Google Scholar 

  5. Surendra K. Shukla, Vinee Purohit, Kamiya Mehla, Venugopal Gunda, Nina V. Chaika, Enza Vernucci, Ryan J. King, Jaime Abrego, Gennifer D. Goode, Aneesha Dasgupta, Alysha L. Illies, Teklab Gebregiworgis, Bingbing Dai, Jithesh J. Augustine, Divya Murthy, Kuldeep S. Attri, Oksana Mashadova, Paul M. Grandgenett, Robert Powers, Quan P. Ly, Audrey J. Lazenby, Jean L. Grem, Fang Yu, José M. Matés, John M. Asara, Jung-whan Kim, Jordan H. Hankins, Colin Weekes, Michael A. Hollingsworth, Natalie J. Serkova, Aaron R. Sasson, Jason B. Fleming, Jennifer M. Oliveto, Costas A. Lyssiotis, Lewis C. Cantley, Lyudmyla Berim, Pankaj K. Singh, (2017) MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 32(1):71–87.e7

    Google Scholar 

  6. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713. https://doi.org/10.1038/nrc2468

    Article  CAS  PubMed  Google Scholar 

  7. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276(12):9519–9525. https://doi.org/10.1074/jbc.M010144200

    Article  CAS  PubMed  Google Scholar 

  9. Hansen PA, Gulve EA, Holloszy JO (1994) Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. J Appl Physiol 76(2):979–985

    Article  CAS  PubMed  Google Scholar 

  10. Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK (2017) GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 400:37–46. https://doi.org/10.1016/j.canlet.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  11. Goode G, Gunda V, Chaika NV, Purohit V, Yu F, Singh PK (2017) MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PloS one 12(5):e0176820. doi:10.1371/journal.pone.0176820

    Google Scholar 

  12. Surendra K. Shukla, Aneesha Dasgupta, Kamiya Mehla, Venugopal Gunda, Enza Vernucci, Joshua Souchek, Gennifer Goode, Ryan King, Anusha Mishra, Ibha Rai, Sangeetha Nagarajan, Nina V. Chaika, Fang Yu, Pankaj K. Singh, (2015) Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget 6(38):41146–41161

    Google Scholar 

  13. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292. https://doi.org/10.1016/j.cmet.2013.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Allison SJ, Knight JR, Granchi C, Rani R, Minutolo F, Milner J, Phillips RM (2014) Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogene 3:e102. https://doi.org/10.1038/oncsis.2014.16

    Article  CAS  Google Scholar 

  15. Henry RJ, Chiamori N, Golub OJ, Berkman S (1960) Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol 34:381–398

    Article  CAS  PubMed  Google Scholar 

  16. Lloyd B, Burrin J, Smythe P, Alberti KG (1978) Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem 24(10):1724–1729

    CAS  PubMed  Google Scholar 

  17. Parks SK, Mazure NM, Counillon L, Pouyssegur J (2013) Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J Cell Physiol 228(9):1854–1862. https://doi.org/10.1002/jcp.24346

    Article  CAS  PubMed  Google Scholar 

  18. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, Rabinowitz JD (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9:712. https://doi.org/10.1038/msb.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murthy, D., Vernucci, E., Goode, G., Abrego, J., Singh, P.K. (2018). Evaluating the Metabolic Impact of Hypoxia on Pancreatic Cancer Cells. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics