Skip to main content

A Protocol for Measuring Mitotic Chromosome Condensation Quantitatively in Fission Yeast Cells

  • Protocol
  • First Online:
Cohesin and Condensin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1515))

Abstract

Even though the formation of compact cylindrical chromosomes early during mitosis or meiosis is a prerequisite for the successful segregation of eukaryotic genomes, little is known about the molecular basis of this chromosome condensation process. Here, we describe in detail the protocol for a quantitative chromosome condensation assay in fission yeast cells, which is based on precise time-resolved measurements of the distances between two fluorescently labeled positions on the same chromosome. In combination with an automated computational analysis pipeline, this assay enables the study of various candidate proteins for their roles in regulating genome topology during cell divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naumova N, Imakaev M, Fudenberg G et al (2013) Organization of the mitotic chromosome. Science (New York, NY) 342:948–953

    Article  CAS  Google Scholar 

  2. Vas ACJ, Andrews CA, Kirkland Matesky K et al (2007) In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. Mol Biol Cell 18:557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petrova B, Dehler S, Kruitwagen T et al (2013) Quantitative analysis of chromosome condensation in fission yeast. Mol Cell Biol 33:984–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12:521–534

    Article  CAS  PubMed  Google Scholar 

  5. Mizuguchi T, Fudenberg G, Mehta S et al (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zofall M, Grewal SIS (2006) RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol 71:487–496

    Article  CAS  PubMed  Google Scholar 

  7. Lassadi I, Bystricky K (2011) Tracking of single and multiple genomic loci in living yeast cells. Methods Mol Biol (Clifton, NJ) 745:499–522

    Article  CAS  Google Scholar 

  8. Lewis M, Chang G, Horton NC et al (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science (New York, NY) 271:1247–1254

    Article  CAS  Google Scholar 

  9. Orth P, Schnappinger D, Hillen W et al (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7:215–219

    Article  CAS  PubMed  Google Scholar 

  10. Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  CAS  PubMed  Google Scholar 

  11. Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858

    Article  CAS  PubMed  Google Scholar 

  12. Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11:1227–1239

    Article  CAS  PubMed  Google Scholar 

  13. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lassadi I, Kamgoué A, Goiffon I et al (2015) Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLoS Comput Biol 11, e1004306

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saad H, Gallardo F, Dalvai M et al (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet 10, e1004187

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luche DD, Forsburg SL (2009) Cell-cycle synchrony for analysis of S pombe DNA replication. Methods Mol Biol (Clifton, NJ) 521:437–448

    Article  CAS  Google Scholar 

  18. Petrova B (2012) In vivo analysis of chromosome condensation in Schizosaccharomyces pombe (PhD Thesis, University of Heidelberg)

    Google Scholar 

  19. Mora-Bermúdez F, Ellenberg J (2007) Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods (San Diego, CA) 41:158–167

    Article  Google Scholar 

  20. Hediger F, Taddei A, Neumann FR et al (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 375:345–365

    Article  CAS  PubMed  Google Scholar 

  21. Llères D, James J, Swift S et al (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187:481–496

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science (New York, NY) 343:77–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Kota Miura (CMCI, EMBL Heidelberg) for advice and developing the Fiji software plugin for data analysis and to the EMBL Advanced Light Microscopy Facility (ALMF) for assistance. Work in the authors’ laboratory is funded by EMBL and grants HA5853/1-2 and HA5853/2-1 from the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian H. Haering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schiklenk, C., Petrova, B., Haering, C.H. (2017). A Protocol for Measuring Mitotic Chromosome Condensation Quantitatively in Fission Yeast Cells. In: Yokomori, K., Shirahige, K. (eds) Cohesin and Condensin. Methods in Molecular Biology, vol 1515. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6545-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6545-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6543-4

  • Online ISBN: 978-1-4939-6545-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics