Skip to main content

Isolation of Mouse Bone Marrow Mesenchymal Stem Cells

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  2. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  3. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889

    Article  CAS  PubMed  Google Scholar 

  5. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boregowda SV, Phinney DG (2013) MSCs: Paracrine Effects. In: Keating A, Hematti P (eds) Mesenchymal stromal cells: biology and clinical applications. Humana Press, Totowa, NJ, pp 145–168

    Chapter  Google Scholar 

  7. Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  8. Digirolamo CM, Stokes D, Colter D et al (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  9. Thirumala S, Goebel WS, Woods EJ (2013) Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 13:673–691

    Article  CAS  PubMed  Google Scholar 

  10. Bearpark AD, Gordon MY (1989) Adhesive properties distinguish sub-populations of haemopoietic stem cells with different spleen colony-forming and marrow repopulating capacities. Bone Marrow Transplant 4:625–628

    CAS  PubMed  Google Scholar 

  11. Kerk DK, Henry EA, Eaves AC et al (1985) Two classes of primitive pluripotent hemopoietic progenitor cells: separation by adherence. J Cell Physiol 125:127–134

    Article  CAS  PubMed  Google Scholar 

  12. Simmons PJ, Zannettino A, Gronthos S et al (1994) Potential adhesion mechanisms for localisation of haemopoietic progenitors to bone marrow stroma. Leuk Lymphoma 12:353–363

    Article  CAS  PubMed  Google Scholar 

  13. Witte PL, Robinson M, Henley A et al (1987) Relationships between B-lineage lymphocytes and stromal cells in long-term bone marrow cultures. Eur J Immunol 17:1473–1484

    Article  CAS  PubMed  Google Scholar 

  14. Deryugina EI, Muller-Sieburg CE (1993) Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol 13:115–150

    CAS  PubMed  Google Scholar 

  15. Gordon MY, Bearpark AD, Clarke D et al (1990) Haemopoietic stem cell subpopulations in mouse and man: discrimination by differential adherence and marrow repopulating ability. Bone Marrow Transplant 5(Suppl 1):6–8

    PubMed  Google Scholar 

  16. Gupta V, Rajaraman S, Costanzi JJ (1987) Effect of oxygen on the clonal growth of adherent cells (CFU-F) from different compartments of mouse bone marrow. Exp Hematol 15:1153–1157

    CAS  PubMed  Google Scholar 

  17. Ren H, Cao Y, Zhao Q et al (2006) Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347:12–21

    Article  CAS  PubMed  Google Scholar 

  18. Sun S, Guo Z, Xiao X et al (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21:527–535

    Article  CAS  PubMed  Google Scholar 

  19. Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711

    Article  PubMed  Google Scholar 

  20. Peister A, Mellad JA, Larson BL et al (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668

    Article  CAS  PubMed  Google Scholar 

  21. Tropel P, Noel D, Platet N et al (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295:395–406

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Zhang C, Xiong F et al (2008) Comparative study of mesenchymal stem cells from C57BL/10 and mdx mice. BMC Cell Biol 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu X, Chen S, Orlando SA et al (2011) p85alpha regulates osteoblast differentiation by cross-talking with the MAPK pathway. J Biol Chem 286:13512–13521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A 92:4818–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Josse C, Schoemans R, Niessen NA et al (2010) Systematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells. Stem Cells Dev 19:1167–1173

    Article  CAS  PubMed  Google Scholar 

  26. Tolar J, Nauta AJ, Osborn MJ et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379

    Article  CAS  PubMed  Google Scholar 

  27. Jeong JO, Han JW, Kim JM et al (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108:1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miura M, Miura Y, Padilla-Nash HM et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    Article  PubMed  Google Scholar 

  29. Baddoo M, Hill K, Wilkinson R et al (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    Article  CAS  PubMed  Google Scholar 

  30. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phinney DG (2008) Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 449:171–186

    CAS  PubMed  Google Scholar 

  32. Boregowda SV, Krishnappa V, Chambers JW et al (2012) Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: implications for long-term culture expansion. Stem Cells 30:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harvey DM, Levine AJ (1991) p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 5:2375–2385

    Article  CAS  PubMed  Google Scholar 

  34. Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315:3598–3610

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Fan X, Kovi RC et al (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67:10889–10898

    Article  CAS  PubMed  Google Scholar 

  36. Johnstone B, Hering TM, Caplan AI et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  CAS  PubMed  Google Scholar 

  37. Mackay AM, Beck SC, Murphy JM et al (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  CAS  PubMed  Google Scholar 

  38. Gregory CA, Gunn WG, Peister A et al (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84

    Article  CAS  PubMed  Google Scholar 

  39. Dobson KR, Reading L, Haberey M et al (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif Tissue Int 65:411–413

    Article  CAS  PubMed  Google Scholar 

  40. Krishnappa V, Boregowda SV, Phinney DG (2013) The peculiar biology of mouse mesenchymal stromal cells – oxygen is the key. Cytotherapy 15:536–541

    Article  CAS  PubMed  Google Scholar 

  41. Phinney DG, Kopen G, Isaacson RL et al (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank previous members of the Phinney lab for assistance with development of this protocol including Dr. Gene C. Kopen, Maria Dutreil, and Melody Baddoo. This work is supported by a grant to DGP (1 R24-OD018254-01) from the Director’s Office at NIH, which provides funds to distribute IDmMSCs prepared from strains of interest to researchers worldwide. Contact dphinney@scripps.edu for more information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Phinney Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Boregowda, S.V., Krishnappa, V., Phinney, D.G. (2016). Isolation of Mouse Bone Marrow Mesenchymal Stem Cells. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics