Skip to main content

Three-Dimensional Reconstructions of the Dolphin EAR

  • Chapter
Sensory Abilities of Cetaceans

Part of the book series: NATO ASI Series ((NSSA,volume 196))

Abstract

The umwelt or perceptual world of odontocetes is largely defined by acoustic cues imperceptible to humans. Like bats, they use ultrasonic frequencies to echolocate. To penetrate this acoustic world, we must use indirect anatomical and psychophysical techniques. While bat research has incorporated anatomy and physiology to describe neural processing of echolocation signals, cetacean research, hampered by practical and legal restrictions, depends largely upon spectral and temporal analyses of emitted sounds coupled with behavioral observations. From these investigations, we have gained considerable information about the psycho-acoustics of dolphin echolocation, but we still know little about the receptor anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au, W.W.L., Floyd, R.W., Penner, R.H. and Murchison, A.E., 1974, Measurement of echolocation signals of the Atlantic Bottle-nosed dolphin, Tursiops truncatus montagu, in open waters, T. Acoust. Soc. of Am., 56: 1280–1290.

    Article  CAS  Google Scholar 

  • Brownlee, S., 1983, Correlations between Sounds and Behavior in the Hawaiian Spinner Dolphin, Stenella longirostris, M.S. thesis, University of California, Santa Cruz.

    Google Scholar 

  • Bruns, V., 1976, Peripheral auditory tuning in the Doppler shift compensating bat, Rhinolophus ferrumequinum: II. Frequency mapping in the cochlea, T. Comp. Physiol., 106: 77–86.

    Article  Google Scholar 

  • Bruns, V. and Schmieszek, E.T., 1980, Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea, Hearing Res., 3: 27–43.

    Article  CAS  Google Scholar 

  • Bullock, T.H., Grinnell, A.D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanagisawa, K., 1968, Electrophysiological studies of central auditory mechanisms in cetaceans, Z. vergl. Physiol., 59: 117–156.

    Google Scholar 

  • Bullock, T., and Ridgway, S., 1972, Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds, Tour. Neurobiol., 3: 79–99,

    Article  CAS  Google Scholar 

  • Busnel, R-G., and Dziedzic, A., 1966, Acoustic signals of the pilot whale Globicephala melaena and of the porpoises Delphinus delphis and Phocoena phocoena, in: “Whales, Dolphins, and Porpoises,” K.S. Norris, ed., University of California Press, Berkeley.

    Google Scholar 

  • Caldwell, M.C., and Caldwell, D.K., 1967, Intraspecific transfer of information via pulsed sound in captive odontocete cetaceans, in.: “Animal Sonar Systems: Biology and Bionics, II,” R-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas.

    Google Scholar 

  • Caldwell, M.C. and Caldwell, D. K., 1971, Statistical evidence for individual signature whistles in Pacific whitesided dolphins, Lagenorhynchus obliquidens, Cetology, 3: 1–9.

    Google Scholar 

  • Camhi, J.M., 1984, “Neuroethology: Nerve Cells and the Natural Behavior of Animals,” Sinauer Assoc, Inc., Sunderland.

    Google Scholar 

  • Diercks, K.J., 1972, Biological sonar systems: A bionics survey, Applied Research Laboratories, ARL-TR-72–34, University of Texas.

    Google Scholar 

  • Diercks, K.J., Trochta, R.T., Greenlaw, R.L., and Evans, W.E., 1971, Recording and analysis of dolphin echolocation signals, T. Acoust. Soc. Am., 49: 1729–1732.

    Article  Google Scholar 

  • Evans, W.E., 1967, Vocalizations among marine mammals, in: “Marine Bio-Acoustics,” W.N. Tavolga, ed., Pergamon, New York.

    Google Scholar 

  • Evans, W.E., 1973, Echolocation by marine delphinids and one species of fresh water dolphin, T. Acoust. Soc. Am., 54: 191–199.

    Article  Google Scholar 

  • Evans, W.E., and Prescott, J.H., 1962, Observations of the sound production capabilities of the bottlenose porpoise: A study of whistles and clicks, Zoologica, 47: 121–128.

    Google Scholar 

  • Feng, W., Liang, C., Wang, J., and Wang, X., 1986, Morphometric and Stereoscopic Studies on the Spiral and Vestibular Ganglia of Lipotes vexillifer., (prepubl.).

    Google Scholar 

  • Firbas, W., 1972, Über anatomische Anpassungen des Hörorgans an die Aufnahme hoher Frequenzen, Monatsschr. Ohr. Laryn.-Rhinol., 106: 105–156

    CAS  Google Scholar 

  • Fleischer, G., 1976, Hearing in extinct cetaceans as determined by cochlear structure, Tour. Paleon., 50: 133–152.

    Google Scholar 

  • Fraser, F., and Purves, P., 1960, Hearing in cetaceans: Evolution of the accessory air sacs in the structure and function of the outer and middle ear in Recent cetaceans, Bull. Brit. Mus. Nat. Hist., 7: 1–140.

    Google Scholar 

  • Graves, W.L., Carey, G.A., Benac, S.L., and Cameron, L.W., 1984, Modeling and Graphic Display System for Cardiovascular Research Using Random 3-D Data, IEEE 1984 Int. Symp. on Medical Images and Icons, 304–308.

    Chapter  Google Scholar 

  • Grinnell, A.D., 1963, The neurophysiology of audition in bats: Intensity and frequency parameters, T. Physiol., 167: 38–66.

    CAS  Google Scholar 

  • Guild, S.R., 1921, A graphic reconstruction method for the study of the organ of Corti, Anat. Rec. 22: 141–157.

    Article  Google Scholar 

  • Hinchcliffe, R., and Pye, A. 1968, The cochlea in Chiroptera: A quantitative approach, Int. Audiol., 7: 259–266.

    Article  Google Scholar 

  • Hinchcliffe, R., and Pye, A., 1969, Variations in the middle ear of the Mammalia, T. Zool., 157: 277–288.

    Google Scholar 

  • Iurato, S., 1962, Functional implications of the nature and submicroscopic structure of tectorial and basilar membranes, I. Acoust. Soc. of Am., 34: 1368–1395.

    Google Scholar 

  • Kamminga, C.F., Engelsma, F.J., and Terry, R.P., 1989, Acoustic observations and comparison on wild, captive and open water Sotalia and Inia, Eighth Bienn. Conf. Biol. Mar. Mamm., 33.

    Google Scholar 

  • Kasuya, T.. 1973, Systematic consideration of recent toothed whales based on the morphology of tympano-periotic bone, Sci. Rep. Whale Res. Inst., 25: 1–103.

    Google Scholar 

  • Kellogg, W.N., 1959, Auditory perception of submerged objects by porpoises, J. Acoust. Soc. Am., 31: 1–6.

    Article  Google Scholar 

  • Ketten, D. R., 1984, Correlations of Morphology with Frequency for Odontocete Cochlea: Systematics and Topology, Ph.D. thesis, The Johns Hopkins University, Baltimore.

    Google Scholar 

  • Knudsen, E.I., 1981, The Hearing of the barn owl, Sei Am., 245(6): 113–125.

    Google Scholar 

  • Long, G.R., 1980, Some psychophysical measurements of frequency in the greater horseshoe bat, in: “Psychophysical, Psychological, and Behavioural Studies in Hearing,” G. van den Brink and F. Bilsen, eds., Delft University Press, Delft.

    Google Scholar 

  • Maue-Dickson, W., Dickson, D.R., and Pullen, F.W., 1983, “Computed Tomographic Atlas of the Head and Neck,” Little, Brown and Co., New York.

    Google Scholar 

  • McCormick, J.G., Weaver, E.G., Palin, G., and Ridgway, S.H., 1970, Sound conduction in the dolphin ear, T. Acoust. Soc. Am., 48: 1418–1428.

    Article  Google Scholar 

  • Mehl, B., and Andersen, S., 1973, Echolocation: High-frequency component in the click of the harbor porpoise (Phocoena phocoena L.), T. Acoust. Soc. Am., 57: 1368–1372.

    Article  Google Scholar 

  • Montali, R.J., and Migaki, G., 1980, “The Comparative Pathology of Zoo Animals,” Smithsonian Inst. Press, Wash., D.C.

    Google Scholar 

  • Moore, P.W.B., 1990, Investigations on the control of echolocation pulses in the dolphin, (this volume).

    Google Scholar 

  • Moran, P.R., Nickles, R.J., and Zagzebski, J.A., 1983, The physics of medical imaging, Phys. Today, July: 36–42.

    Google Scholar 

  • Nagel, E.L., Morgane, P.J., and McFarland, W.L., 1964, Anesthesia for the bottlenose dolphin, Tursiops truncatus. Science, 146: 1591–1593.

    CAS  Google Scholar 

  • Neuweiler, G., 1980, Auditory processing of echoes: Peripheral processing, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.

    Google Scholar 

  • Norris, J., and Leatherwood, K., 1981, Hearing in the Bowhead Whale, Balaena mysticetus, as estimated by cochlear morphology, Hubbs Sea World Rsch. Inst. Tech. Rpt. no. 81–132: 15.1–15.49.

    Google Scholar 

  • Norris, K.S., 1969, The echolocation of marine mammals, in: “The Biology of Marine Mammals,” H.J. Andersen, ed., Academic Press, New York.

    Google Scholar 

  • Norris, K.S., and Harvey, G.W., 1974, Sound transmission in the porpoise head, T. Acoust. Soc. Am., 56: 659–664.

    Article  CAS  Google Scholar 

  • Norris, K.S., Harvey, G.W., Burzell, L.A., and Krishna Kartha, D.K., 1972, Sound production in the freshwater porpoise Sotalia cf. fluviatilis Gervais and Deville and Inia geoffrensis Blainville in the Rio Negro Brazil, in: “Investigations on Cetacea,” G. Pilleri, ed., 4: 251–262, University of Berne, Berne.

    Google Scholar 

  • Norris, K.S., Prescott, J.H., Asa-Dorian, P.V., and Perkins, P., 1961, An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus, Montagu, Biol. Bull., 120: 163–176.

    Article  Google Scholar 

  • Oelschlager, H. A., 1990, Evolutionary morphology and acoustics in the dolphin skull, (this volume).

    Google Scholar 

  • Oelschlager, H. A., 1986, Comparative morphology and evolution of the otic region in toothed whales, Am T. Anat., 177: 353–368.

    Article  CAS  Google Scholar 

  • Pilleri, G., 1983, The sonar system of the dolphins, Endeavour, 7: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, G.D., 1980, Organizational and encoding features of single neurons in the inferior colliculus of bats, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.

    Google Scholar 

  • Popper, A.N., 1980, Sound emission and detection by delphinids, in: “Cetacean Behavior: Mechanisms and Functions,” L.M. Herman, ed., John Wiley and Sons, New York.

    Google Scholar 

  • Purves, P.E., and Pilleri, G.E., 1983, “Echolocation in Whales and Dolphins,” Academic Press, Inc., Ltd., London.

    Google Scholar 

  • Reysenbach de Haan, F.W., 1956, Hearing in whales, Acta Otolaryngol., Suppl., 134: 1–114.

    Google Scholar 

  • Ridgway, S.H., 1980, Electrophysiological experiments on hearing in odontocetes, in: “Animal Sonar Systems,” R-G. Busnel and J.F. Fish, eds., Plenum Press, New York.

    Google Scholar 

  • Ridgway, S.H., and McCormick, J.G., 1967, Anesthetization of porpoises for major surgery, Science, 158: 510–512.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway, S.H., McCormick, J.G., and Wever, E.G., 1974, Surgical approach to the dolphin’s ear, T. Expl. Zool., 188: 265–276.

    Article  CAS  Google Scholar 

  • Sales, G., and Pye, D., 1974, “Ultrasonic Communication by Animals,” John Wiley and Sons, New York.

    Book  Google Scholar 

  • Schevill, W. E., 1964, Underwater sounds of cetaceans, in: “Marine Bio-Acoustics,” W.N. Tavolga, ed., Pergamon Press, New York.

    Google Scholar 

  • Schuknecht, H.F., 1953, Technique for study of cochlear function and pathology in experimental animals, Arch. Otolaryngol., 58: 377–397.

    Article  CAS  Google Scholar 

  • Schuknecht, H.F., and Gulya, A.J., 1986, Anatomy of the Temporal Bone with Surgical Implications. Lea and Feibiger, Philadelphia.

    Google Scholar 

  • Stinson, M.R., 1983, Implication of ear canal geometry for various acoustical measurements, T. Acoust. Soc. Am., 74(S1): 8.

    Article  Google Scholar 

  • Suga, N., 1983, Neural representation of bisonar (sic) information in the auditory cortex of the mustached bat, T. Acoust. Soc. Am., 74(S1): 31.

    Article  Google Scholar 

  • Supin, A.Y. and Popov, V.V., 1990, Frequency selectivity of the auditory system of the bottlenosed dolphin Tursiops truncatus, (this volume).

    Google Scholar 

  • Thomas, J., Chun, N., and Au, W., 1988, Underwater audiogram of a false killer whale (Pseudorca crassidens), T. Acoust. Soc. Am., 84: 936–940.

    Article  CAS  Google Scholar 

  • Watkins, W., and Schevill, W., 1977, Sperm whale codas, T. Acoust. Soc. Am., 62: 1485–1590.

    Article  Google Scholar 

  • Watkins, W.A., and Wartzok, D., 1985, Sensory biophysics of marine mammals, Mar. Mamm. Sci., 3: 219–230.

    Article  Google Scholar 

  • West, C. D., 1986, Cochlear length, spiral turns and hearing, 12th International Congress on Acoustics, 1: B-1.

    Google Scholar 

  • Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1971a, The cochlea of the dolphin, Tursiops truncatus: The basilar membrane, Proc. Nat. Acad, Sci., U.S.A., 68: 2708–2711.

    Article  CAS  Google Scholar 

  • Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1971b, The cochlea of the dolphin, Tursiops truncatus: Hair cells and ganglion cells, Proc, Nat. Acad. Sci., U.S.A., 68: 2908–2912.

    Article  CAS  Google Scholar 

  • Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1972, Cochlear structure in the dolphin, Lagenorhynchus obliquidens, Proc. Nat. Acad. Sci., U.S.A., 69: 657–661.

    Article  CAS  Google Scholar 

  • Wood, F.G., and Evans, W.E., 1980, Adaptiveness and ecology of echolocation in toothed whales, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.

    Google Scholar 

  • Zwislocki, J., 1981, Sound analyses in the ear: A history of discoveries, Amer. Sci., 69: 184–192.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ketten, D.R., Wartzok, D. (1990). Three-Dimensional Reconstructions of the Dolphin EAR. In: Thomas, J.A., Kastelein, R.A. (eds) Sensory Abilities of Cetaceans. NATO ASI Series, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0858-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0858-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0860-5

  • Online ISBN: 978-1-4899-0858-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics