Skip to main content

Functional Types of Marine Planktonic Primary Producers and Their Relative Significance in the Food Web

  • Chapter
Flows of Energy and Materials in Marine Ecosystems

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

The process of primary production is restricted to cells with special organelles containing chlorophyll. In the marine pelagic ecosystem the great bulk of organisms showing the ability of primary production are unicellular plants usually called phytoplankton to which this review is restricted. Other types of primary producers, e.g. floating beds of the large brown alga Sargassum or chemosynthetic organisms which might be locally important for the flow of energy and matter in the pelagic ecosystem are not dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldredge, A.L., and Silver, M.W., 1982, Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and R. imbricata var. shrubsolei) in the Eastern Pacific Ocean, Mar. Biol., 66: 83.

    Article  Google Scholar 

  • Anonymous, 1975, Proposals for a standarization in diatom terminology and diagnosis, Nova Hedwigia, Beih., 53: 323.

    Google Scholar 

  • Aubert, M., Gauthier, M. and Bernhard, P., 1980, Les systemes d’information des microorganismes marins, Revue Intern. L’Océan. Médic., 21: 1.

    Google Scholar 

  • Baars, J.W.M., 1981, Autecological investigations on marine diatoms. 2. Generation times of 50 species, Hydrobiol. Bull., 15: 137.

    Article  Google Scholar 

  • Baden, D.G., and Mende, T.J., 1978, Glucose transport and metabolism in Gymnodinium breve, Phytochemistry, 17: 1553.

    Article  Google Scholar 

  • Banse, K., 1976, Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size — A review, J. Phycol. 12: 135.

    Google Scholar 

  • Bates, S.S., 1976, Effects of light and amonium on nitrate uptake by two species of estuarine phytoplankton, Limnol. Oceanogr., 21: 212.

    Article  Google Scholar 

  • Bé, A.W.H., Hemleben, C., Anderson, O.R., Spindler, M., Hacundra, J., and Tuntivate, S., 1977, Laboratory and field observations of living planktonic foraminifera, Micropaleont., 23:155.

    Article  Google Scholar 

  • Bienfang, P.K., 1980, Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA, Mar. Biol., 61: 69.

    Article  Google Scholar 

  • Bienfang, P.K., Harrison, P.J., and Quarmby, L.M., 1982, Sinking rate responses to depletion of nitrate, phosphate and silicate in four marine diatoms, Mar. Biol., 67: 295.

    Article  Google Scholar 

  • Boalch, G.T., and Harbour, D.S., 1977, Unusual diatom off the coast of South-West England and its effect on fishing, Nature 269: 687.

    Article  Google Scholar 

  • Bold, H.C., and Wynne, M.J., 1978, “Introduction to the algae,” Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Bouck, G.B., 1971, The structure, origin, isolation and composition of the tubular mastigonemes of the Ochromonas flagellum, J. Cell. Biol., 50: 362.

    Article  Google Scholar 

  • Bouck, G.B., 1972, Architecture and assembly of mastigonemes, Adv. Cell Molec. Biol., 2: 237.

    Google Scholar 

  • Brand, L.E., Murphy, L.S., Guillard, R.R.L., and Lee, H. -T., 1981, Genetic Variability and differentiation in the temperature niche component of the diatom Thallassiosira pseudonana, Mar. Biol., 62: 103.

    Article  Google Scholar 

  • Carlucci, A.F., and Bowes, P.N., 1970, Vitamin production and utilization by phytoplankton in mixed culture, J. Phycol., 6: 394.

    Google Scholar 

  • Drebes, G., 1977, Sexuality, in: “The biology of diatoms,” D. Werner, ed., Blackwell, Oxford.

    Google Scholar 

  • Droop, M.R., 1954, A note on the isolation of small marine algae and flagellates for pure cultures, J. Mar. Biol. Ass. U.K., 33: 511.

    Article  Google Scholar 

  • Droop, M.R., 1974, The nutrient status of algae in continuous culture, J. Mar. Biol. Ass. U.K., 54: 825.

    Article  Google Scholar 

  • Droop, M.R., 1975, The nutrient status of algal cells in batch culture, J. Mar. Biol. Ass. U.K., 55: 541.

    Article  Google Scholar 

  • Dürr, G., 1979, Elektronenmikroskopische Untersuchungen am Panzer von Dinoflagellaten II Peridinium cinctum, Arch. Protistenk., 122: 88.

    Article  Google Scholar 

  • Elbrächter, M., 1977, On population dynamics in multi-species cultures of diatoms and dinoflagellates, Helgoländer wiss. Meeresunters., 30: 192.

    Article  Google Scholar 

  • Elbrächter, M., and Boje, R., 1978, On the ecological significance of Thalassiosira partheneia in the Northwest African upwelling area, in: “Upwelling ecosystems,” R. Boje and M. Tomczak, eds., Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Eppley, R.W., 1972, Temperature and phytoplankton growth in the sea, Fishery Bull. 70: 1063.

    Google Scholar 

  • Eppley, R.W., Holm-Hansen, O., and Strickland, J.D.H., 1968, Some observations on the vertical migration of dinoflagellates, J. Phycol. 4: 333.

    Article  Google Scholar 

  • Ettl, H., 1980, “Grundriß der allgemeinen Algologie,” G. Fischer, Stuttgart.

    Google Scholar 

  • Falkowski, P.G., 1977, A theoretical description of nitrate uptake kinetics in marine phytoplankton based on bisubstrate kinetics, J. theor. Biol., 64: 375.

    Article  Google Scholar 

  • Falkowski, P.G., and Owens, T.G., 1980, Light-shade adaptation. Two strategies in marine phytoplankton, Pl. Physiol., 66: 592.

    Article  Google Scholar 

  • Fedorov, V.D., and Kustenko, N.G., 1972, Competition between marine planktonic diatoms in monoculture and mixed culture, Oceanology, 12: 91.

    Google Scholar 

  • Fenchel, T., 1982, a, Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser. 8: 211.

    Article  Google Scholar 

  • Fenchel, T., 1982 b, Ecology of heterotrophic microflagellates. II Bioenergetics and growth, Mar. Ecol. Prog. Ser. 8: 225.

    Article  Google Scholar 

  • Forward, Jrn. R.B., 1976, Light and diurnal vertical migration: Photobehaviour and photophysiology of plankton, in.: “Photochemical and Photobiological Reviews,” K.C. Smith, ed., Plenum Press, New York.

    Google Scholar 

  • Frost, B.W., 1980, Grazing, in: “The physiological ecology of phyto-plankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Gallegos, C.L., Hornberger, G.M., and Kelly, M.G., 1980, Photo-synthesis-light relationships of a mixed culture of phyto-plankton in fluctuating light, Limnol. Oceanogr., 25: 1082.

    Article  Google Scholar 

  • Goldman J.C., and Glibert P.M., 1982, Comparative rapid ammonium uptake by four marine phytoplankton species, Limnol. Oceanogr., 27: 814.

    Article  Google Scholar 

  • Gran, H.H., 1912, Pelagic plant life, in: “The depth of the ocean,” J. Murray and H. Hjort, ed., MacMillan, London.

    Google Scholar 

  • Hardy, J.T., and Valett, M., 1981, Natural and microcosm phyto-neuston communities of Sequin Bay, Washington, Estuarine, Coastal and Shelf Science, 12: 3.

    Article  Google Scholar 

  • Hasle, G.R., 1954, More on phototactic diurnal migration in marine dinoflagellates, Nytt Magasin for Botanikk, 2: 139.

    Google Scholar 

  • Hellebust, J.A., and Lewin, J., 1977, Heterotrophic nutrition, in: “The biology of diatoms,” D. Werner, ed., Blackwell, Oxford.

    Google Scholar 

  • Hibberd, D.J., 1977, Observations on the ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum, J. Mar. Biol., Ass. U.K., 57: 45.

    Article  Google Scholar 

  • Horstmann, U., 1981, Observations on the peculiar diurnal vertical migration of a red tide Dinophyceae in tropical shallow waters, J. Phycol., 16: 481.

    Article  Google Scholar 

  • Hulburt, E.M., 1957, The taxonomy of unarmored Dinophyceae of shallow embayments on Cape Cod, Massachusetts, Biol. Bull. 112: 196.

    Article  Google Scholar 

  • Huntsman, S.A., and Sunda, W.G., 1980, The role of trace metals in regulating phytoplankton growth, in: The physiological ecology of phytoplankton, I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Hustedt, F., 1930, Die Kieselalgen Deutschlands, Osterreichs und Scweiz mit Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete, in “Dr. L. Rabenhorst’s Krypto-gamenflorra,” Bd. 7, L. Rabenhorst, ed., Akad. Verl. -Ges., Leipzig.

    Google Scholar 

  • Jerlov, N.G., 1968, “Optical Oceanography,” Elsevier Oceanography Series, 5, Elsevier, Amsterdam.

    Book  Google Scholar 

  • Jørgensen, E.G., 1968, The adaptation of plankton algae. II. Aspects of the temperature adaptation of Skeletonema costatum, Physiol. Plant., 21: 423.

    Article  Google Scholar 

  • Kahn, N., and Swift, E., 1978, Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schutt, Limnol. Oceanogr., 23: 649.

    Article  Google Scholar 

  • Kamykowski, D., 1981, Dinoflagellate growth rate in water columns of varying turbidity as a function of migration phase with daylight, J. Plankton Res. 3: 357.

    Article  Google Scholar 

  • Kofoid, C.A., and Swezy, O., 1921, “The free-living unarmored Dino-flagellata,” Mem. Univ. Calif., 5: 1.

    Google Scholar 

  • Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H., Eds., 1981, “Physiological Plant Ecology I. Responses to the physical environment,” Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Leblond, P.H., and Taylor, F.J.R., 1976, The propulsive mechanisms of the dinoflagellate transverse flagellum reconsidered, Biosystems, 8: 33.

    Article  Google Scholar 

  • Li, W.K.W., 1980, Temperature adaption in phytoplankton: Cellular and photosynthetic characteristics, in: “Primary productivity in the sea,” P.G. Falkowski, ed., Plenum, New York, London.

    Google Scholar 

  • Lüning, K., 1981, Light, in: “The Biology of sea weeds,” C.S. Lobban and M.J. Wynne, ed., Blackwell, Oxford.

    Google Scholar 

  • MacIsaac, J. J., and Dugdale, R.C., 1972, Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea, Deep Sea Res., 19: 209.

    Google Scholar 

  • Malone, T.C., 1980, Algal size, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • McCarthy, J.J., 1980, Nitrogen, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Morey-Gaines, G., and Elbrächter, M., in press, in: “The biology of dinoflagellates,” F.J.R. Taylor, ed., Blackwell, Oxford.

    Google Scholar 

  • Morris, I. Ed., 1980, “The physiological ecology of phytoplankton,” Blackwell, Oxford.

    Google Scholar 

  • Nalewajko, C., and Lean, D.R.S., 1980, Phosphorus, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Norkrans, B., 1980, Surface microlayers in aquatic environments, in: “Advances in microbial ecology,” Vol. 4, M. Alexander, ed., Plenum, New York, London.

    Google Scholar 

  • Paasche, E., 1980, Silicon, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Packard, T.T., Blasco, D. and Barber, R.T., 1978, Mesodinium rubrum in the Baja California Upwelling system, in: “Upwelling systems,” R. Boje and M. Tomczak, eds., Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Paffenhöfer, G. -A., Strickler, J.R., and Alcaraz, M., 1982, Suspension feeding by herbivorous calanoid copepods: a cinematographic study, Mar. Biol., 67: 193.

    Article  Google Scholar 

  • Perry, M.J., Talbot, M. C., and Alberte, R.S., 1981, Photoadaption in marine phytoplankton, responses to the photosynthetic unit, Mar. Biol., 62: 91.

    Article  Google Scholar 

  • Pintner, I.J., and Altmyer, V.L., 1973, Production of Vitamin B12 binder by marine phytoplankton, J. Phycol. (suppl.) 9: 13.

    Google Scholar 

  • Pintner, I.J., and Altmyer, V.L., 1979, Vitamin B12 binder and other algal inhibitors, J. Phycol., 15: 391.

    Google Scholar 

  • Platt, T. Ed., 1981, “Physiological bases of phytoplankton ecology,” Can. Bull. Fish. Aquat. Sci., 210: 1.

    Google Scholar 

  • Pollingher, U., and Zemel, E., 1981, In situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cineturn forma westii (Lemm.) Lefèvre, Br. phycol. J., 16: 281.

    Article  Google Scholar 

  • Raven, J.A., 1980, Nutrient transport in microalgae, in: “Advances in microbial physiology,” A.H. Rose and J.G. Morris, eds., Academic Press, London.

    Google Scholar 

  • Richardson, K., and Fogg, G.E., 1982, The role of dissolved organic material in the nutrition and survival of marine dinoflagellates, Phycologia 21: 17.

    Article  Google Scholar 

  • Savidge, G., 1980, Photosynthesis of marine phytoplankton in fluctuating light regimes, Mar. Biol. Letters, 1: 295.

    Google Scholar 

  • Schmid, A.M., and Schulz, D., 1979, Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles, Protoplasma, 100: 267.

    Article  Google Scholar 

  • Schmid, A.M., Borowitzka, M.A., and Volcani, B.E., 1982, Morphogenesis and Biochemistry of diatom cell walls, in: “Cell biology monographs,” Vol. 8, O. Kiermayer, ed., Springer, Wien, New York.

    Google Scholar 

  • Schöne, H., 1970, Untersuchungen zur ökologischen Bedeutung des Seegangs für das Plankton mit besonderer Berücksichtigung mariner Kieselalgen, Int. Revue ges. Hydrobiol. 55: 595.

    Article  Google Scholar 

  • Schöne, H.K., 1972, Experimentelle Untersuchungen zur Ökologie der marinen Kieselalge Thalassiosira rotula. I. Temperatur und Licht, Mar. Biol., 13: 284.

    Article  Google Scholar 

  • Schütt, F., 1982, Das Pflanzenleben der Hochsee, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, 1 (A): 243.

    Google Scholar 

  • Sieburth, J. McN., Willis, P.J., Johnson, K.M., Burney, C.M., Lavoie, D.M., Hinga, K.R., Caron, D.A., French, F.W., Johnson, P.W., and Davis, P.G., 1976, Dissolved organic matter and heterotrophic Microneuston in the surface microlayers of the North Atlantic, Science 194: 1415.

    Article  Google Scholar 

  • Silva, E.S., 1965, Note on some cytophysiological aspects in Prorocentrum micans Ehrenb. and Goniodoma pseudogoniaulax Biech., Notas e Est. do I.B.M., 30: 3.

    Google Scholar 

  • Smayda, T.J., 1958, Biogeographical studies of marine phytoplankton. Oikos, 9:158.

    Article  Google Scholar 

  • Smayda, T.J., 1970, The suspension and sinking of phytoplankton in the sea, Oceanography and Marine Biology 8: 353.

    Google Scholar 

  • Sournia, A., 1974, Circadian periodicities in natural populations of marine phytoplankton, Adv. Mar. Biol., 12: 325.

    Article  Google Scholar 

  • Sournia, A., 1981, Morphological bases of competition and succession, Can. Bull. Fish. Aquat. Sci., 210: 339.

    Google Scholar 

  • Sournia, A., 1982, Form and function in marine phytoplankton, Biol. Rev., 57: 347.

    Article  Google Scholar 

  • Sournia, A., 1982, Is there a shade flora in the marine plankton? J. Plankt. Res., 4: 391

    Article  Google Scholar 

  • Staker, R.D., and Bruno, S.F., 1980, Diurnal vertical migration in marine phytoplankton, Bot. Marina, 23: 167.

    Article  Google Scholar 

  • Steeman Nielsen, E., 1975, “Marine photosynthesis,” Elsevier Oceanography Series, 13, Elsevier, Amsterdam.

    Google Scholar 

  • Steidinger, K.A., Tester, L.S., and Taylor, F.J.R., 1980, A redescription of Pyrodinium bahamense var. compressa (Bohm) stat. nov. from Pacific red tides, Phycologia, 19: 329.

    Article  Google Scholar 

  • Stosch, H.A. von, 1956, Abgeschlossene Hohlraumsysterne mit semipermeablen Wänden als Strukturelemente von Diatomeenschalen, Ber. Deutsche Bot. Ges. 69: 99.

    Google Scholar 

  • Stosch, H.A. von, 1964, Zum Problem der sexuellen Fortpflanzung in der Peridineengattung Ceratium, Helgol. wiss. Meeresunters. 10: 140.

    Article  Google Scholar 

  • Stosch, H.A. von, 1980, The “endochiastic areola”, a complex new type of siliceous structures in a diatom, Bacillaria, 3: 21.

    Google Scholar 

  • Swift, D.G., 1980, Vitamins and phytoplankton growth, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Taylor, D.L., and Seliger, H.H., Eds., 1979, “Toxic dinoflagellate blooms,” Elsevier, New York, Amsterdam, Oxford.

    Google Scholar 

  • Taylor, F.J.R., 1976, Flagellate phylogeny: a study in conflicts, J. Protozool. 23: 28.

    Google Scholar 

  • Throndsen, J., 1973, Motility in some marine nanoplankton flagellates, Norw. J. Zool., 21: 193.

    Google Scholar 

  • Throndsen, J., 1979, The significance of ultraplankton in marine primary production, Acta Bot. Fennica, 110: 53.

    Google Scholar 

  • Vince-Prue, D., 1975, “Photoperiodism in plants,” McGraw-Hill, London.

    Google Scholar 

  • Walsby, A.F., and Reynolds, C.S., 1980, Sinking and floating, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.

    Google Scholar 

  • Wandschneider, K., 1979, Vertical distribution of phytoplankton during investigations of a natural surface film, Mar. Biol. 52: 105.

    Article  Google Scholar 

  • White, A.W., 1976, Growth inhibition caused by turbulence in the toxic marine dinoflagellate Gonyaulax excavata, J. Fish. Res. Board Can., 33: 2598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Elbrächter, M. (1984). Functional Types of Marine Planktonic Primary Producers and Their Relative Significance in the Food Web. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics