Skip to main content

Monoclonal Antibody Therapy For Malignant Glioma

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier—both at baseline and in the context of malignancy—is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue and to the anterior chamber of the eye. Br J Exp Pathol 1948; 29(1):58–69.

    PubMed  CAS  Google Scholar 

  2. Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 2000; 21(3):141–147.

    Article  PubMed  CAS  Google Scholar 

  3. Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 1995; 20(3):269–287.

    Article  PubMed  CAS  Google Scholar 

  4. Stevens A, Kloter I, Roggendorf W. Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 1988; 61(4):738–743.

    Article  Google Scholar 

  5. Bhat R, Steinman L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron 2009; 64(1):123–132.

    Article  PubMed  CAS  Google Scholar 

  6. Bradl M, Misu T, Takahashi T et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009; 66(5):630–643.

    Article  PubMed  CAS  Google Scholar 

  7. Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003; 349(16):1543–5154.

    Article  PubMed  CAS  Google Scholar 

  8. Qin D, Ou G, Mo H et al. Improved efficacy of chemotherapy for glioblastoma by radiation-induced opening of blood-brain barrier: clinical results. Int J Radiat Oncol Biol Phys 2001; 51(4):959–962.

    Article  PubMed  CAS  Google Scholar 

  9. Qin DX, Zheng R, Tang J et al. Influence of radiation on the blood-brain barrier and optimum time of chemotherapy. Int J Radiat Oncol Biol Phys 1990; 19(6):1507–1510.

    Article  PubMed  CAS  Google Scholar 

  10. de Vries NA, Beijnen JH, Boogerd W et al. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 2006; 6(8):1199–1209.

    Article  PubMed  Google Scholar 

  11. Bidros DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics 2009; 6(3):539–546.

    Article  PubMed  CAS  Google Scholar 

  12. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 1972; 223(2):323–331.

    PubMed  CAS  Google Scholar 

  13. Neuwelt EA, Frenkel EP, Rapoport S et al. Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery 1980; 7(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  14. Cloughesy TF, Black KL. Pharmacological blood-brain barrier modification for selective drug delivery. J Neurooncol 1995; 26(2):125–132.

    Article  PubMed  CAS  Google Scholar 

  15. Inamura T, Nomura T, Bartus RT et al. Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. J Neurosurg 1994; 81(5):752–758.

    Article  PubMed  CAS  Google Scholar 

  16. Hynynen K, McDannold N, Vykhodtseva N et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220(3):640–646.

    Article  PubMed  CAS  Google Scholar 

  17. Freund J. Accumulation of Antibodies in the Central Nervous System. J Exp Med 1930; 51(6):889–902.

    Article  PubMed  CAS  Google Scholar 

  18. Ishihara H, Kubota H, Lindberg RL et al. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 2008; 67(5):435–448.

    Article  PubMed  CAS  Google Scholar 

  19. Grabb PA, Gilbert MR. Neoplastic and pharmacological influence on the permeability of an in vitro blood-brain barrier. J Neurosurg 1995; 82(6):1053–1058.

    Article  PubMed  CAS  Google Scholar 

  20. Schneider SW, Ludwig T, Tatenhorst L et al. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol 2004; 107(3):272–276.

    Article  PubMed  Google Scholar 

  21. Lee M, Bard F, Johnson-Wood K et al. Abeta42 immunization in Alzheimer’s disease generates Abeta N-terminal antibodies. Ann Neurol 2005; 58(3):430–435.

    Article  PubMed  CAS  Google Scholar 

  22. Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8):916–919.

    Article  PubMed  CAS  Google Scholar 

  23. Nicoll JA, Barton E, Boche D et al. Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 2006; 65(11):1040–1048.

    Article  PubMed  CAS  Google Scholar 

  24. Orgogozo JM, Gilman S, Dartigues JF et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  25. Holmes C, Boche D, Wilkinson D et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634):216–223.

    Article  PubMed  CAS  Google Scholar 

  26. Gibbs-Strauss SL, Samkoe KS, O’Hara JA et al. Detecting epidermal growth factor receptor tumor activity in vivo during cetuximab therapy of murine gliomas. Acad Radiol. 17(1):7–17.

    Google Scholar 

  27. Wei LH, Olafsen T, Radu C et al. Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 2008; 49(11):1828–1835.

    Article  PubMed  CAS  Google Scholar 

  28. Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy: brain tissue profiles after ventriculocistemal perfusion. J Pharmacol Exp Ther 1975; 195(1):73–83.

    PubMed  CAS  Google Scholar 

  29. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2000; 2(1):45–59.

    PubMed  CAS  Google Scholar 

  30. Bobo RH, Laske DW, Akbasak A et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994; 91(6):2076–2080.

    Article  PubMed  CAS  Google Scholar 

  31. Ferguson SD, Foster K, Yamini B. Convection-enhanced delivery for treatment of brain tumors. Expert Rev Anticancer Ther 2007; 7(12 Suppl):S79–85.

    Article  Google Scholar 

  32. Degen JW, Walbridge S, Vortmeyer AO et al. Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J Neurosurg 2003; 99(5):893–898.

    Article  PubMed  CAS  Google Scholar 

  33. Heimberger AB, Archer GE, McLendon RE et al. Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 2000; 6(10):4148–4153.

    PubMed  CAS  Google Scholar 

  34. Kaiser MG, Parsa AT, Fine RL et al. Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery 2000; 47(6):1391–8; discussion 1398–1399.

    Article  PubMed  CAS  Google Scholar 

  35. Ding D, Kanaly CW, Bigner DD et al. Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 2010; 98(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ding D, Kanaly CW, Cummings TJ et al. Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321. Neurol Res 2009.

    Google Scholar 

  37. Sampson JH, Akabani G, Friedman AH et al. Comparison of intratumoral bolus injection and convection-enhanced delivery of radiolabeled antitenascin monoclonal antibodies. Neurosurg Focus 2006; 20(4):E14.

    Article  Google Scholar 

  38. Sampson JH, Archer G, Pedain C et al. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg 2009; 113:301–309.

    Google Scholar 

  39. Sampson JH, Akabani G, Archer GE et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 2008; 10(3):320–329.

    Article  PubMed  CAS  Google Scholar 

  40. Kunwar S, Chang S, Westphal M et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 2010; 12:871–878.

    Article  PubMed  CAS  Google Scholar 

  41. Mueller S, Polley MY, Lee B et al. Effect of imaging and catheter characteristics on clinical outcome for patients in the PRECISE study. J Neurooncol 2010; 101:267–277.

    Article  PubMed  Google Scholar 

  42. Clynes RA, Towers TL, Presta LG et al. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6(4):443–436.

    Article  PubMed  CAS  Google Scholar 

  43. Clynes R, Takechi Y, Moroi Y et al. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA 1998; 95(2):652–656.

    Article  PubMed  CAS  Google Scholar 

  44. Stavenhagen JB, Gorlatov S, Tuaillon N et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 2007; 67(18):8882–8890.

    Article  PubMed  CAS  Google Scholar 

  45. Hens M, Vaidyanathan G, Welsh P et al. Labeling internalizing anti-epidermal growth factor receptor variant III monoclonal antibody with (177)Lu: in vitro comparison of acyclic and macrocyclic ligands. Nucl Med Biol 2009; 36(2):117–128.

    Article  PubMed  CAS  Google Scholar 

  46. Lillo AM, Sun C, Gao C et al. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalization and delivery of antitumor agents. Chem Biol 2004; 11(7):897–906.

    Article  PubMed  CAS  Google Scholar 

  47. Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11(1):69–82.

    Article  PubMed  CAS  Google Scholar 

  48. Gorski DH, Beckett MA, Jaskowiak NT et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59(14):3374–3378.

    PubMed  CAS  Google Scholar 

  49. Jain RK et al. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8(8):610–622.

    Article  PubMed  CAS  Google Scholar 

  50. Chamberlain MC, Johnston SK. Salvage therapy with single agent bevacizumab for recurrent glioblastoma. J Neurooncol 2010; 96(2):259–269.

    Article  PubMed  CAS  Google Scholar 

  51. Narayana A, Kelly P, Golfinos J et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg 2009; 110(1):173–180.

    Article  PubMed  Google Scholar 

  52. Norden AD, Young GS, Setayesh K et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity and patterns of recurrence. Neurology 2008; 70(10):779–787.

    Article  PubMed  CAS  Google Scholar 

  53. Ballman KV, Buckner JC, Brown PD et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 2007; 9(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  54. FFriedman HS, Petros WP, Friedman AH et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999; 17(5):1516–1525.

    PubMed  CAS  Google Scholar 

  55. Wong ET, Hess KR, Gleason MJ et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999; 17(8):2572–2578.

    PubMed  CAS  Google Scholar 

  56. Yung WK et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000; 83(5):588–593.

    Article  PubMed  CAS  Google Scholar 

  57. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007; 25(30):4722–4729.

    Article  PubMed  CAS  Google Scholar 

  58. Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27(28):4733–4740.

    Article  PubMed  CAS  Google Scholar 

  59. Reardon DA, Desjardins A, Vredenburgh JJ et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 2009; 101(12):1986–1994.

    Article  PubMed  CAS  Google Scholar 

  60. Gutin PH, Iwamoto FM, Beal K et al. Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 2009; 75(1):156–163.

    Article  PubMed  CAS  Google Scholar 

  61. Eller JL, Longo SL, Hicklin DJ et al. Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery 2002; 51(4):1005–13; discussion 1013–1014.

    PubMed  Google Scholar 

  62. Perera RM, Narita Y, Furnari FB et al. Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptor-specific antibody generates enhanced antitumor activity. Clin Cancer Res 2005; 11(17):6390–6399.

    Article  PubMed  CAS  Google Scholar 

  63. Banerjee D, Matthews P, Matayeva E et al. Enhanced T-cell responses to glioma cells coated with the anti-EGF receptor antibody and targeted to activating FcgammaRs on human dendritic cells. J Immunother 2008; 31(2):113–120.

    Article  PubMed  CAS  Google Scholar 

  64. Neyns B, Sadones J, Joosens E et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 2009; 20(9):1596–1603.

    Article  PubMed  CAS  Google Scholar 

  65. Diaz Miqueli A, Rolff J, Lemm M et al. Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies. Br J Cancer 2009; 100(6):950–958.

    Article  PubMed  CAS  Google Scholar 

  66. Ramos TC et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase l/ll trial. Cancer Biol Ther 2006; 5(4):375–379.

    Article  PubMed  CAS  Google Scholar 

  67. Eller JL, Longo SL, Kyle MM et al. Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 2005; 56(1):155–162; discussion 162.

    PubMed  Google Scholar 

  68. Amado RG, Wolf M, Peeters M et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(10):1626–1634.

    Article  PubMed  CAS  Google Scholar 

  69. Giusti RM, Shastri KA, Cohen MH et al. FDA drug approval summary: panitumumab (Vectibix). Oncologist 2007; 12(5):577–583.

    Article  PubMed  CAS  Google Scholar 

  70. Giusti RM, Cohen MH, Keegan P et al. FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist 2009; 14(3):284–290.

    Article  PubMed  CAS  Google Scholar 

  71. Hecht JR, Mitchell E, Chidiac T et al. A randomized phase IIIB trial of chemotherapy, bevacizumab and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009; 27(5):672–680.

    Article  PubMed  CAS  Google Scholar 

  72. Mineo JF, Bordron A, Quintin-Roué I et al. Recombinant humanised anti-HER2/neu antibody (Herceptin) induces cellular death of glioblastomas. Br J Cancer 2004; 91(6):1195–1199.

    PubMed  CAS  Google Scholar 

  73. Pillay V, Allaf L, Wilding AL et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia 2009; 11(5):448–458, 2 p following 458.

    PubMed  CAS  Google Scholar 

  74. Gusterson B, Cowley G, Smith JA et al. Cellular localisation of human epidermal growth factor receptor. Cell Biol Int Rep 1984; 8(8):649–658.

    Article  PubMed  CAS  Google Scholar 

  75. Nagao K, Hisatomi H, Hirata H et al. Expression of molecular marker genes in various types of normal tissue: implication for detection of micrometastases. Int J Mol Med 2002; 10(3):307–310.

    PubMed  CAS  Google Scholar 

  76. Choi BD, Archer GE, Mitchell DA et al. EGFRvlll-targeted vaccination therapy of malignant glioma. Brain Pathol 2009; 19(4):713–723.

    Article  PubMed  CAS  Google Scholar 

  77. Ekstrand AJ, Sugawa N, James CD et al. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N-and/or C-terminal tails. Proc Natl Acad Sci USA 1992; 89(10):4309–4313.

    Article  PubMed  CAS  Google Scholar 

  78. Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50(24):8017–8022.

    PubMed  CAS  Google Scholar 

  79. Nishikawa R, Ji XD, Harmon RC et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994; 91(16):7727–7731.

    Article  PubMed  CAS  Google Scholar 

  80. Wikstrand CJ, McLendon RE, Friedman AH et al. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvlll. Cancer Res 1997; 57(18):4130–4140.

    PubMed  CAS  Google Scholar 

  81. Sampson JH, Crotty LE, Lee S et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc Natl Acad Sci USA 2000; 97(13):7503–7508.

    Article  PubMed  CAS  Google Scholar 

  82. Luwor RB, Johns TG, Murone C et al. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de 2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 2001; 61(14):5355–5361.

    PubMed  CAS  Google Scholar 

  83. Mishima K, Johns TG, Luwor RB et al. Growth suppression of intracranialxenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61(14):5349–5354.

    PubMed  CAS  Google Scholar 

  84. Scott AM, Lee FT, Tebbutt N et al. Aphase I clinicaltrial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA 2007; 104(10):4071–4076.

    Article  PubMed  CAS  Google Scholar 

  85. Glassy MC, Hagiwara H. Summary analysis of the preclinical and clinical results of brain tumor patients treated with pritumumab. Hum Antibodies 2009; 18(4): 127–137.

    PubMed  CAS  Google Scholar 

  86. Burgess T, Coxon A, Meyer S et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 2006;66(3):1721–179.

    Article  PubMed  CAS  Google Scholar 

  87. Kim KJ, Wang L, Su YC et al. Systemicanti-hepatocytegrowthfactormonoclonalantibodytherapyinduces the regression of intracranial glioma xenografts. Clin Cancer Res 2006; 12(4): 1292–1298.

    Article  PubMed  CAS  Google Scholar 

  88. Li Y, Guessous F, DiPierro C et al. Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy. Mol Cancer Ther 2009; 8(2):376–385.

    Article  PubMed  CAS  Google Scholar 

  89. Martens T, Schmidt NO, Eckerich C et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 2006; 12(20 Pt 1):6144–6152.

    Article  PubMed  CAS  Google Scholar 

  90. Boskovitz A, Wikstrand CJ, Kuan CT et al. Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 2004; 4(9):1453–1471.

    Article  PubMed  CAS  Google Scholar 

  91. Fiveash JB, Gillespie GY, Oliver PG et al. Enhancement of glioma radiotherapy and chemotherapy response with targeted antibody therapy against death receptor 5. Int J Radiat Oncol Biol Phys 2008; 71(2): 507–516.

    Article  PubMed  CAS  Google Scholar 

  92. Derui L, Woo DV, Emrich J et al. Radiotoxicity of 1251-labeled monoclonal antibody 425 against cancer cells containing epidermal growth factor receptor. Am J Clin Oncol 1992; 15(4):288–294.

    Article  PubMed  CAS  Google Scholar 

  93. Foulon CF, Reist CJ, Bigner DD, et al. Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody. Cancer Res 2000; 60(16):4453–4460.

    PubMed  CAS  Google Scholar 

  94. Bourdon MA, Matthews TJ, Pizzo SV et al. Immunochemical and biochemical characterization of a glioma-associated extracellular matrix glycoprotein. J Cell Biochem 1985; 28(3): 183–195.

    Article  PubMed  CAS  Google Scholar 

  95. Bourdon MA, Wikstrand CJ, Furthmayr H et al. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res 1983; 43(6):2796–2805.

    PubMed  CAS  Google Scholar 

  96. Reardon DA, Zalutsky MR, Bigner DD. Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther 2007; 7(5):675–687.

    Article  PubMed  CAS  Google Scholar 

  97. Riva P et al. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 1311: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res 1995; 55(23 Suppl):5952–5956.

    Google Scholar 

  98. Riva P, Franceschi G, Frattarelli M et al. 1311 radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma-phase I and II study. Acta Oncol 1999; 38(3):351–359.

    Article  PubMed  CAS  Google Scholar 

  99. Zalutsky MR, Moseley RP, Coakham HB, et al. Pharmacokinetics and tumor localization of 1311-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 1989; 49(10):2807–2813.

    PubMed  CAS  Google Scholar 

  100. Zalutsky MR, Moseley RP, Benjamin JC et al. Monoclonal antibody and F(ab’)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res 1990;50(13):4105–4110.

    PubMed  CAS  Google Scholar 

  101. Schold SC Jr, Zalutsky MR, Coleman RE et al. Distribution and dosimetry of 1–123-labeled monoclonal antibody 81C6 in patients with anaplastic glioma. Invest Radiol 1993; 28(6):488–496.

    Article  PubMed  Google Scholar 

  102. Bigner DD, Brown MT, Friedman AH et al. lodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 1998; 16(6):2202–2212.

    PubMed  CAS  Google Scholar 

  103. Brown MT, Coleman RE, Friedman AH et al. Intrathecal 1311-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clin Cancer Res 1996; 2(6):963–972.

    PubMed  CAS  Google Scholar 

  104. Akabani G, Cokgor I, Coleman RE et al. Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 2000; 46(4):947–958.

    Article  PubMed  CAS  Google Scholar 

  105. Cokgor I, Akabani G, Kuan CT et al. Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 2000; 18(22):3862–3872.

    PubMed  CAS  Google Scholar 

  106. Reardon DA, Akabani G, Coleman RE et al. Phase II trial of murine (131)l-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002; 20(5):1389–1397.

    Article  PubMed  CAS  Google Scholar 

  107. Reardon DA, Zalutsky MR, Akabani G et al. A pilot study: 1311-antitenascin monoclonal antibody 81 c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 2008; 10(2):182–189.

    Article  PubMed  CAS  Google Scholar 

  108. Reardon DA, Akabani G, Coleman RE et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 2006; 24(1):115–122.

    Article  PubMed  CAS  Google Scholar 

  109. He X, Archer GE, Wikstrand CJ et al. Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. J Neuroimmunol 1994; 52(2):127–137.

    Article  PubMed  CAS  Google Scholar 

  110. Reardon DA, Quinn JA, Akabani G et al. Novel human lgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 1311 and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 2006; 47(6):912–918.

    PubMed  CAS  Google Scholar 

  111. Zalutsky MR, Reardon DA, Akabani G et al. Clinical experience with alpha-particle emitting 211 At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 2008; 49(1):30–38.

    Article  PubMed  CAS  Google Scholar 

  112. Casacó A, López G, García I et al. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 2008; 7(3):333–339.

    Article  PubMed  Google Scholar 

  113. Emrich JG, Bender H, Class R et al. In vitro evaluation of iodine-125-labeled monoclonal antibody (MAb 425) in human high-grade glioma cells. Am J Clin Oncol 1996; 19(6):601–608.

    Article  PubMed  CAS  Google Scholar 

  114. Emrich JG, Hand CM, Dilling TJ et al. Biodistribution of 1251-MAb 425 in a human glioma xenograft model: effect of chloroquine. Hybridoma 1997; 16(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  115. Brady LW, Miyamoto C, Woo DV et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Radiat Oncol Biol Phys 1992; 22(1):225–230.

    Article  PubMed  CAS  Google Scholar 

  116. Emrich JG, Brady LW, Quang TS et al. Radioiodinated (1-125) monoclonal antibody 425 in the treatment of high grade glioma patients: ten-year synopsis of a novel treatment. Am J Clin Oncol 2002; 25(6):541–546.

    Article  PubMed  Google Scholar 

  117. Debinski W, Obiri NI, Powers SK et al. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995; 1(11):1253–1258.

    PubMed  CAS  Google Scholar 

  118. Joshi BH, Leland P, Asher A et al. In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res 2001; 61(22):8058–8061.

    PubMed  CAS  Google Scholar 

  119. Kawakami M, Kawakami K, Puri RK. lnterleukin-4-Pseudomonasexotoxin chimeric fusion protein for malignant glioma therapy. J Neurooncol 2003; 65(1):15–25.

    Article  PubMed  Google Scholar 

  120. Kunwar S, Chang SM, Prados MD et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 2006; 20(4):E15.

    PubMed  Google Scholar 

  121. Mut M, Sherman JH, Shaffrey ME et al. Cintredekin besudotox in treatment of malignant glioma. Expert Opin Biol Ther 2008; 8(6):805–812.

    Article  PubMed  CAS  Google Scholar 

  122. Vogelbaum MA, Sampson JH, Kunwar S et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007; 61(5):1031-7; discussion 1037–1038.

    Article  Google Scholar 

  123. Oh S, Ohlfest JR, Todhunter DA et al. Intracranial elimination of human glioblastoma brain tumors in nude rats using the bi sped fie ligand-directed toxin, DTEGF13 and convection enhanced delivery. J Neurooncol 2009; 95(3):331–342.

    Article  PubMed  CAS  Google Scholar 

  124. Weber F, Asher A, Bucholz R et al. Safety, tolerability and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003; 64(1-2):125–137.

    Article  PubMed  Google Scholar 

  125. Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003; 65(1):27–35.

    Article  PubMed  Google Scholar 

  126. Sampson JH, Reardon DA, Friedman AH et al. Sustained radiographic and clinical response in patient with bifrontal recurrent glioblastoma multiforme with intracerebral infusion of the recombinant targeted toxin TP-38: case study. Neuro Oncol 2005; 7(1):90–96.

    Article  PubMed  Google Scholar 

  127. Kioi M, Seetharam S, Puri RK. Targeting IL-13Ralpha2-positive cancer with a novel recombinant immunotoxin composed of a single-chain antibody and mutated Pseudomonas exotoxin. Mol Cancer Ther 2008; 7(6): 1579–1587.

    Article  PubMed  CAS  Google Scholar 

  128. Archer GE, Sampson JH, Lorimer IA et al. Regional treatment of epidermal growth factor receptor vlllex pressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin Cancer Res 1999; 5(9):2646–2652.

    PubMed  CAS  Google Scholar 

  129. Beers R, Chowdhury P, Bigner D et al. Immunotoxins with increased activity against epidermal growthfactor receptor vlll-expressing cells produced by antibody phage display. Clin Cancer Res 2000; 6(7):2835–2843.

    PubMed  CAS  Google Scholar 

  130. Ochiai H, Archer GE, Herndon JE 2nd et al. EGFRvlll-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8+T-cells. Cancer Immunol Immunother 2008; 57(1):115–121.

    Article  PubMed  CAS  Google Scholar 

  131. Barth RF, Coderre JA, Vicente MG et al. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005; 11(11):3987–4002.

    Article  PubMed  CAS  Google Scholar 

  132. Barth RF, Wu G, Yang W et al. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent. Appl Radiat Isot 2004; 61(5):899–903.

    Article  PubMed  CAS  Google Scholar 

  133. Wu G, Yang W, Barth RF et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res 2007; 13(4): 1260–1280.

    Article  PubMed  CAS  Google Scholar 

  134. Yang W, Barth RF, Wu G et al. Boron neutron capture therapy of EGFR or EGFRvlll positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot 2009; 67(7–8 Suppl):S328–31.

    Article  CAS  Google Scholar 

  135. Yang W, Barth RF, Wu G et al. Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas. Appl Radiat Isot 2004; 61(5):981–985.

    Article  PubMed  CAS  Google Scholar 

  136. Yang W, Barth RF, Wu G et al. Molecular targeting and treatment of EGFRvlll-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res 2006; 12(12):3792–3802.

    Article  PubMed  CAS  Google Scholar 

  137. Mamot C, Drummond DC, Noble CO et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005; 65(24):11631–1168.

    Article  PubMed  CAS  Google Scholar 

  138. Feng B, Tomizawa K, Michiue H et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009; 30(9):1746–1755.

    Article  PubMed  CAS  Google Scholar 

  139. Pan X, Wu G, Yang W et al. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 2007; 18(1): 101–108.

    Article  PubMed  CAS  Google Scholar 

  140. Zhang Y, Zhang YF, Bryant J et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004; 10(11):3667–377.

    Article  PubMed  CAS  Google Scholar 

  141. Dix AR, Brooks WH, Roszman TL et al. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100(1-2):216–232.

    Article  PubMed  CAS  Google Scholar 

  142. Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol Today 1991; 12(10):370–374.

    Article  PubMed  CAS  Google Scholar 

  143. Morford LA, Elliott LH, Carlson SL et al. T-cell receptor-mediated signaling is defective in T-cells obtained from patients with primary intracranial tumors. J Immunol 1997; 159(9):4415–4425.

    PubMed  CAS  Google Scholar 

  144. Roszman TL, Brooks WH. Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clin Exp Immunol 1980; 39(2):395–402.

    PubMed  CAS  Google Scholar 

  145. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology 1971; 21(6):903–914.

    PubMed  CAS  Google Scholar 

  146. Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic self-tolerance maintained by activated T-cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151–1164.

    PubMed  CAS  Google Scholar 

  147. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T-cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2):287–296.

    Article  PubMed  CAS  Google Scholar 

  148. Jonuleit H, Schmitt E, Stassen M et al. Identification and functional characterization of human CD4(+)CD25(+) T-cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193(11): 1285–1294.

    Article  PubMed  CAS  Google Scholar 

  149. Dieckmann D, Plottner H, Berchtold S et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T-cells with regulatory properties from human blood. J Exp Med 2001; 193(11): 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  150. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T-cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 2006; 8(3):234–243.

    Article  PubMed  Google Scholar 

  151. Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66(6):3294–3302.

    Article  PubMed  CAS  Google Scholar 

  152. Learn CA, Fecci PE, Schmittling RJ et al. Profiling of CD4+, CD8+ and CD4+CD25+CD45RO+FoxP3+ T-cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T-cells from healthy volunteers. Clin Cancer Res 2006; 12(24):7306–7315.

    Article  PubMed  CAS  Google Scholar 

  153. ElAndaloussi AY, Han, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+regulatory T-cells in mice with experimental brain tumors. J Neurosurg 2006; 105(3):430–437.

    Article  CAS  Google Scholar 

  154. Kohm AP, McMahon JS, Podojil JR et al. Cutting Edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 2006; 176(6):3301–3305.

    PubMed  CAS  Google Scholar 

  155. Fecci PE, Sweeney AE, Grossi PM et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T-cells. Clin Cancer Res 2006; 12(14 Pt 1):4294–4305.

    Article  PubMed  CAS  Google Scholar 

  156. Linsley PS, Greene JL, Brady W et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994; 1(9):793–801.

    Article  PubMed  CAS  Google Scholar 

  157. Thompson CB, Allison JP. The emerging role of CTLA-4 as an immune attenuator. Immunity 1997; 7(4):445–450.

    Article  PubMed  CAS  Google Scholar 

  158. Walunas TL, Lenschow DJ, Bakker CY et al. CTLA-4 can function as a negative regulator of T-cell activation. Immunity 1994; 1(5):405–413.

    Article  PubMed  CAS  Google Scholar 

  159. Fecci PE, Ochiai H, Mitchell DA et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T-cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007; 13(7):2158–2167.

    Article  PubMed  CAS  Google Scholar 

  160. Grauer OM, Nierkens S, Bennink E et al. CD4+FoxP3+ regulatory T-cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007; 121(1):95–105.

    Article  PubMed  CAS  Google Scholar 

  161. Fontana A, Hengartner H, de Tribolet N et al. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol 1984; 132(4):1837–1844.

    PubMed  CAS  Google Scholar 

  162. Wrann M, Bodmer S, de Martin R et al. T-cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 1987; 6(6): 1633–1636.

    PubMed  CAS  Google Scholar 

  163. Kuppner MC, Hamou MF, Sawamura Y et al. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 1989; 71(2):211–217.

    Article  PubMed  CAS  Google Scholar 

  164. Fontana A, Frei K, Bodmer S et al. Transforming growth factor-beta inhibits the generation of cytotoxic T-cells in virus-infected mice. J Immunol 1989; 143(10):3230–3234.

    PubMed  CAS  Google Scholar 

  165. Kehrl JH, Wakefield LM, Roberts A et al. Production of transforming growth factor beta by human T-lymphocytes and its potential role in the regulation of T-cell growth. J Exp Med 1986; 163(5): 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  166. Gronski P, Seiler FR, Schwick HG. Discovery of antitoxins and development of antibody preparations for clinical uses from 1890 to 1990. Mol Immunol 1991; 28(12):1321–1332.

    Article  PubMed  CAS  Google Scholar 

  167. Karelitz S, Serum sickness. Ann N Y Acad Sci 1949; 50(Art. 7):705–717.

    Article  PubMed  CAS  Google Scholar 

  168. von-Pirquet C, Schick B. Die serumkrankheit. Franz Deuticke, Wien und Leipzig 1905.

    Google Scholar 

  169. Batra SK, Jain M, Wittel UA et al. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 2002; 13(6):603–608.

    Article  PubMed  CAS  Google Scholar 

  170. Jones PT, Dear PH, Foote J et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321(6069):522–525.

    Article  PubMed  CAS  Google Scholar 

  171. Reist CJ, Bigner DD, Zalutsky MR. Human lgG2 constant region enhances in vivo stability of anti-tenascin antibody 81C6 compared with its murine parent. Clin Cancer Res 1998; 4(10):2495–2502.

    PubMed  CAS  Google Scholar 

  172. Riechmann L, Clark M, Waldmann H et al. Reshaping human antibodies for therapy. Nature 1988; 332(6162):323–327.

    Article  PubMed  CAS  Google Scholar 

  173. Shin SU. Chimeric antibody: potential applications for drug delivery and immunotherapy. Biotherapy 1991; 3(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  174. Green LL. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of the rapeutic human monoclonal antibodies. J Immunol Methods 1999; 231(1-2): 11–23.

    Article  PubMed  CAS  Google Scholar 

  175. Lynch DH, Yang XD. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol 2002; 29(1 Suppl 4):47–50.

    Article  PubMed  CAS  Google Scholar 

  176. Barbi T, Drake PM, Drever M etal. Single-chain antigen-binding proteins. Science 1988; 242(4877):423–426.

    Article  Google Scholar 

  177. Huston JS, Levinson D, Mudgett-Hunter M et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85(16):5879–5883.

    Article  PubMed  CAS  Google Scholar 

  178. Reiter Y, Brinkmann U, Kreitman RJ et al. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved frameworkregions. Biochemistry 1994; 33(18):5451–5459.

    Article  PubMed  CAS  Google Scholar 

  179. Begent RH, Verhaar MJ, Chester KA et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 1996; 2(9):979–984.

    Article  PubMed  CAS  Google Scholar 

  180. Yokota T, Milenic DE, Whitlow M et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52(12):3402–3408.

    PubMed  CAS  Google Scholar 

  181. Kuan CT, Reist CJ, Foulon CF et al. 1251-labeled anti-epidermal growth factor receptor-vlll single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin Cancer Res 1999; 5(6):1539–1549.

    PubMed  CAS  Google Scholar 

  182. Schier R, McCall A, Adams GP et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 1996; 263(4):551–567.

    Article  PubMed  CAS  Google Scholar 

  183. Kuan CT, Wikstrand CJ, Archer G et al. Increased binding affinity enhances targeting of glioma xenografts by EGFRvlll-specific scFv. Int J Cancer 2000; 88(6):962–929.

    Article  PubMed  CAS  Google Scholar 

  184. Amann M, Brischwein K, Lutterbuese P et al. Therapeutic window of MuS110, a single-chain antibody construct bispecific for murine EpCAM and murine CD3. Cancer Res 2008; 68(1):143–151.

    Article  PubMed  CAS  Google Scholar 

  185. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 2009; 69(12):4941–4944.

    Article  PubMed  CAS  Google Scholar 

  186. Bluemel C, Hausmann S, Fluhr P et al. Epitope distance to the target cell membrane and antigen size determine the potency of T-cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol Immunother 2010; 59:1197–1209.

    Article  PubMed  CAS  Google Scholar 

  187. Nagorsen D, Bargou R, Ruttinger D et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma 2009; 50(6):886–981.

    Article  PubMed  CAS  Google Scholar 

  188. Schlereth B, Fichtner I, Lorenczewski G et al. Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res 2005; 65(7):2882–2889.

    Article  PubMed  CAS  Google Scholar 

  189. Schlereth B, Kleindienst P, Fichtner I et al. Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for Murine CD3. Cancer Immunol Immunother 2006; 55(7):785–796.

    Article  PubMed  CAS  Google Scholar 

  190. Offner S, Hofmeister R, Romaniuk A et al. Induction of regular cytolytic T-cell synapses by bispecific single-chain antibody constructs on MHC class l-negative tumor cells. Mol Immunol 2006; 43(6):763–771.

    Article  PubMed  CAS  Google Scholar 

  191. Bargou R, Leo E, Zugmaier G et al. Tumor regression in cancer patients by very low doses of a T-cell-engaging antibody. Science 2008; 321(5891):974–977.

    Article  PubMed  CAS  Google Scholar 

  192. Brischwein K, Schlereth B, Guller B et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol 2006; 43(8):1129–1143.

    Article  PubMed  CAS  Google Scholar 

  193. Eshhar Z, Waks T, Gross G et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2):720–724.

    Article  PubMed  CAS  Google Scholar 

  194. Gross G, Eshhar Z. Endowing T-cells with antibody specificity using chimeric T-cell receptors. FASEB J 1992; 6(15):3370–3378.

    PubMed  CAS  Google Scholar 

  195. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21(2):215–223.

    Article  PubMed  CAS  Google Scholar 

  196. Kershaw MH, Westwood JA, Parker LL et al. A phase I study on adoptive immunotherapy using gene-modified T-cells for ovarian cancer. Clin Cancer Res 2006; 12(20 Pt 1):6106–6115.

    Article  PubMed  CAS  Google Scholar 

  197. Lamers CH, Sleijfer S, Vulto AG et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24(13):20–2.

    Article  Google Scholar 

  198. Pule MA, Savoldo B, Myers GD et al. Virus-specific T-cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14(11):1264–1270.

    Article  PubMed  CAS  Google Scholar 

  199. Till BG, Jensen MC, Wang J et al. Adoptive immunotherapy for indolent nonHodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T-cells. Blood 2008; 112(6):2261–2271.

    Article  PubMed  CAS  Google Scholar 

  200. Ahmed N, Ratnayake M, Savoldo B et al. Regression of experimental medulloblastoma following transfer of HER2-specific T-cells. Cancer Res 2007; 67(12):5957–5964.

    Article  PubMed  CAS  Google Scholar 

  201. Morgan RA, Yang JC, Kitano M et al. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18(4):843–851.

    Article  PubMed  CAS  Google Scholar 

  202. Kahlon KS, Brown C, Cooper LJ et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T-cells. Cancer Res 2004; 64(24):9160–9166.

    Article  PubMed  CAS  Google Scholar 

  203. Yaghoubi SS, Jensen MC, Satyamurthy N et al. Noninvasive detection of therapeutic cytolytic T-cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009; 6(1):53–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane A. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chen, K.S., Mitchell, D.A. (2012). Monoclonal Antibody Therapy For Malignant Glioma. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_10

Download citation

Publish with us

Policies and ethics