Skip to main content

Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage

  • Reference work entry
Handbook of Climate Change Mitigation

Abstract

CO2 capture and geological storage (CCS) is one of the most promising technologies to reduce greenhouse gas emissions and mitigate climate change in a fossil fuel–dependant world. If fully implemented, CCS may contribute to reduce 20% of global emissions from fossil fuels by 2050 and 55% by the end of this century. The complete CCS chain consists of capturing CO2 from large stationary sources such as coal-fired power plants and heavy industries, and transport and store it in appropriate geological reservoir s such as petroleum fields, saline aquifer s, and coal seams, therefore returning carbon emitted from fossil fuels (as CO2) back to geological sinks.

Recent studies have shown that geological reservoirs can safely store for many centuries the entire GHG global emissions. Here presented a comprehensive summary of the latest advances in CCS research and technologies that can be used to store significant quantities of CO2 for geological periods of time and, therefore, considerably contribute to GHG emission reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA (2001) Putting carbon back into the ground: IEA greenhouse gas R&D programme. IEA, Cheltenham

    Google Scholar 

  2. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972

    Article  Google Scholar 

  3. IPCC (2005) Special report on carbon dioxide capture and storage. IPCC, New York

    Google Scholar 

  4. IEA (2008) Energy technology perspectives: scenarios and strategies to 2050. IEA, Paris

    Google Scholar 

  5. IEA (2009) Technology roadmap – carbon capture and storage. IEA, Paris

    Google Scholar 

  6. Rubin ES (2008) CO2 capture and transport. Elements 4(5):311–317

    Article  Google Scholar 

  7. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289

    Article  Google Scholar 

  8. Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenhouse Gas Control 1(4):430–443

    Article  Google Scholar 

  9. Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1(1):62–68

    Article  Google Scholar 

  10. IEA (2009) Carbon capture and storage: full-scale demonstration progress update. IEA, Paris

    Google Scholar 

  11. IEA (2009) CO2 capture and storage: a key abatement option. IEA, Paris

    Google Scholar 

  12. Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1(1):1505–1512

    Article  Google Scholar 

  13. Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. Int J Greenhouse Gas Control 4(2):152–160

    Article  Google Scholar 

  14. Kothandaraman A, Nord L, Bolland O et al (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1(1):1373–1380

    Article  Google Scholar 

  15. IPCC (2007) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Cambridge

    Google Scholar 

  16. Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology – the U.S. department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20

    Article  Google Scholar 

  17. Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Article  Google Scholar 

  18. Zhao L, Riensche E, Menzer R et al (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325(1):284–294

    Article  Google Scholar 

  19. Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30(1):53–62

    Article  Google Scholar 

  20. Abad A, Mattisson T, Lyngfelt A et al (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85(9):1174–1185

    Article  Google Scholar 

  21. Corbella BM, de Diego L, García-Labiano F et al (2005) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy Fuels 20(1):148–154

    Article  Google Scholar 

  22. de Diego LF, Gayan P, García-Labiano F et al (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized Bed agglomeration. Energy Fuels 19(5):1850–1856

    Article  Google Scholar 

  23. Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol 60(3):451–459

    Article  Google Scholar 

  24. Bara JE, Carlisle TK, Gabriel CJ et al (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751

    Article  Google Scholar 

  25. Pennline HW, Luebke DR, Jones KL et al (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Tech 89(9):897–907

    Article  Google Scholar 

  26. Hicks JC, Drese JH, Fauth DJ et al (2008) Designing adsorbents for CO2 capture from flue Gas-Hyperbranched Aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903

    Article  Google Scholar 

  27. Pannocchia G, Puccini M, Seggiani M et al (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium Zirconate based sorbents. Ind Eng Chem Res 46(21):6696–6706

    Article  Google Scholar 

  28. Lepaumier H, Picq D, Carrette PL (2009) Degradation study of new solvents for CO2 capture in post-combustion. Energy Procedia 1(1):893–900

    Article  Google Scholar 

  29. Puxty G, Rowland R, Allport A et al (2009) Carbon dioxide Postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43(16):6427–6433

    Article  Google Scholar 

  30. Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62(1–2):29–45

    Article  Google Scholar 

  31. Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111(1–3):478–487

    Article  Google Scholar 

  32. Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91(1–3):78–84

    Article  Google Scholar 

  33. García-Pérez E, Parra J, Ania C et al (2007) A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13(5):469–476

    Article  Google Scholar 

  34. Millward AR, Yaghi OM (2005) Metal – organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999

    Article  Google Scholar 

  35. Franz J, Scherer V (2010) An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J Membr Sci 265(1–2):9

    Google Scholar 

  36. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49

    Article  Google Scholar 

  37. Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63

    Article  Google Scholar 

  38. Shin E-K, Lee B-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53(12):2728–2734

    Article  Google Scholar 

  39. Carvalho PJ, Álvarez VH, Machado JJB et al (2009) High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Supercrit Fluids 48(2):99–107

    Article  Google Scholar 

  40. Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data 54(2):382–386

    Google Scholar 

  41. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477

    Article  Google Scholar 

  42. Muldoon MJ, Aki SNVK, Anderson JL et al (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111(30):9001–9009

    Article  Google Scholar 

  43. Blasig A, Tang J, Hu X et al (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256(1–2):75–80

    Article  Google Scholar 

  44. Tang J, Sun W, Tang H et al (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38(6):2037–2039

    Article  Google Scholar 

  45. Anthony JL, Anderson JL, Maginn EJ et al (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374

    Article  Google Scholar 

  46. Anderson JL, Dixon JK, Maginn EJ et al (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110(31):15059–15062

    Article  Google Scholar 

  47. Tang J, Tang H, Sun W et al (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 26:3325–3327

    Google Scholar 

  48. Scherer GW, Celia MA, Prévost J-H et al (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Thomas DC, Benson S (eds) Carbon dioxide capture for storage in deep geologic formations – results from the CO2 capture project. Elsevier, Amsterdam

    Google Scholar 

  49. Bentham M, Kirby G (2005) CO2 storage in saline aquifers. Oil Gas Sci Technol 60(3):559–567

    Article  Google Scholar 

  50. Holt T, Jensen JI, Lindeberg E (1995) Underground storage of CO2 in aquifers and oil reservoirs. Energ Convers Manage 36(6–9):535–538

    Article  Google Scholar 

  51. Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London

    Google Scholar 

  52. van Bergen F, Gale J, Damen KJ et al (2005) Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production. Energy 29(9–10):1611–1621

    Google Scholar 

  53. Gozalpour F, Ren SR, Tohidi B (2005) CO2 EOR and storage in oil reservoirs. Oil Gas Sci Technol 60(3):537–546

    Article  Google Scholar 

  54. Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energ Convers Manage 34(9–11):1197–1204

    Article  Google Scholar 

  55. Taber JJ, Martin FD, Seright RS (1997) EOR screening criteria revisited – part 1: introduction to screening criteria and enhanced recovery field projects. SPE Res Eng 12(3):9

    Google Scholar 

  56. Taber JJ, Martin FD, Seright RS (1997) EOR screening criteria revisited – part 2: applications and impact of Oil prices. SPE Res Eng 12(3):6

    Google Scholar 

  57. Moritis G (1998) 1998 Worldwide EOR survey. Oil Gas J 20:48

    Google Scholar 

  58. Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42(2–3):282–295

    Article  Google Scholar 

  59. Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ Geosci 8(3):210–217

    Article  Google Scholar 

  60. Day S, Fry R, Sakurovs R et al (2010) Swelling of coals by supercritical gases and its relationship to sorption. Energy Fuels 24(4):2777–2783

    Article  Google Scholar 

  61. Reeves SR, Schoeling L (2001) Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics. In: Fifth international conference on greenhouse gas control technologies. CSIRO, Cairns

    Google Scholar 

  62. Stevens SH, Kuuskraa VA, Gale J et al (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8(3):200–209

    Article  Google Scholar 

  63. Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 degrees C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18(7):1065–1080

    Article  Google Scholar 

  64. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Control 4(1):73–89

    Article  Google Scholar 

  65. Ketzer JM, Iglesias R, Einloft S et al (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito formation (Permian), southern Brazil. Appl Geochem 24(5):760–767

    Article  Google Scholar 

  66. Rosenbauer RJ, Koksalan T, Palandri JL (2005) Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: implications for CO2 sequestration in deep-saline aquifers. Fuel Process Technol 86(14–15):1581–1597

    Article  Google Scholar 

  67. Bateman K, Turner G, Pearce JM et al (2005) Large-scale column experiment: study of CO2, porewater, rock reactions and model test case. Oil Gas Sci Technol 60(1):161–175

    Article  Google Scholar 

  68. Tsang C-F, Doughty C, Rutqvist J et al (2007) Modeling to understand and simulate physico-chemical processes of CO2 geological storage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring and regulation. Blackwell, New York

    Google Scholar 

  69. Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240(3–4):539–558

    Article  Google Scholar 

  70. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations, Denver

    Google Scholar 

  71. Xu TF, Sonnenthal E, Spycher N et al (2006) TOUGHREACT – a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165

    Article  Google Scholar 

  72. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction for application to geochemical modeling. U.S. Geological Survey, Menlo Park

    Google Scholar 

  73. Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration – integrating technology, monitoring and regulation. Blackwell, New York

    Google Scholar 

  74. Benson SM, Cole DR (2008) CO2 Sequestration in deep sedimentary formations. Elements 4(5):325–331

    Article  Google Scholar 

  75. Katz DL, Tek MR (1981) Overview of underground storage of natural Gas. J Petrol Technol 33:943–951

    Google Scholar 

  76. Nuclear Energy Agency (2008) Moving forward with geological disposal of radioactive waste. OECD, Paris

    Google Scholar 

  77. Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London

    Google Scholar 

  78. Pearce JM (1996) Natural occurrences as analogues for the geological disposal of carbon. Fuel Energ Abstr 37(4):305

    MathSciNet  Google Scholar 

  79. Stevens SH, Fox CE, Melzer LS (2000) McElmo Dome and St. Johns natural CO2 deposits: analogs for carbon sequestration. In: GHGT-5, Cairns

    Google Scholar 

  80. Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations – results from the CO2 capture project. Elsevier, Amsterdam

    Google Scholar 

  81. Benson S (2007) Monitoring geological storage of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration – integrating technology, monitoring and regulation. Blackwell, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marcelo Ketzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ketzer, J.M., Iglesias, R.S., Einloft, S. (2012). Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage. In: Chen, WY., Seiner, J., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_37

Download citation

Publish with us

Policies and ethics