Skip to main content

Cyanobacteria

Diversity and Versatility, Clues to Life in Extreme Environments

  • Chapter
Book cover Algae and Cyanobacteria in Extreme Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Bacteria have inhabited Earth for 3.8 billion years and life on our planet was microbial for 3.2 billion years (Schopf, 1994). During this long period, microorganisms have evolved an incredible diversity, although a major part of this diversity may have already existed in the Archean. Cyanobacteria and, hence, oxygenic photosynthesis evolved 2.7–2.2 billion years ago and had therefore ample time to diversify and adapt to newly evolving niches that emerged on Earth (Schopf et al., 2002; Blank, 2004; Tice and Lowe, 2004). Through the advent of oxygenic photosynthesis (Blankenship, 1992), cyanobacteria were responsible for the oxygenation of the Earth’s atmosphere (Buick, 1992), thereby allowing the evolution of plants and animals 0.6 billion years ago and eventually were shaping the present biosphere.

Cyanobacteria combine the fixation of CO2 and N2, the two most important biogeochemical processes on Earth. They are globally important primary producers and contribute greatly to the global nitrogen budget (Karl et al., 2002). Cyanobacteria are essential players in the Earth’s present and past ecosystems. For any understanding of the evolution of life and of the biogeochemical cycles on Earth, knowledge about the ecology and evolution of the cyanobacteria is a prerequisite.

Cyanobacteria colonized successfully almost any illuminated environment on Earth, many of which are considered to be hostile for life. Cyanobacteria play a prominent role in many of these extreme environments. This chapter attempts to find clues explaining the evolutionary and ecological success of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed, R.M.M., Schönhuber, W., Amann, R. and Garcia-Pichel, F. (2002) Picobenthic cyanobacterial populations revealed by 16S rRNA-targeted in situ hybridization. Environmental Microbiology 4,375-382.

    Article  CAS  PubMed  Google Scholar 

  • Adams, D.G. (2000) Heterocyst formation in cyanobacteria. Current Opinion in Microbiology 3, 618-624.

    Article  CAS  PubMed  Google Scholar 

  • Adams, D.G. and Duggan, P.S. (1999) Heterocystand akinete differentiation in cyanobacteria. New Phytologist 144, 3-33.

    Article  Google Scholar 

  • Allewalt, J.P., Bateson, M.M., Revsbech, N.P., Slack, K. and Ward, D.M. (2006) Effect of tempera-ture and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Applied and Environmental Microbiology 72, 544-550.

    Article  CAS  PubMed  Google Scholar 

  • Al-Thukair, A.A. and Golubic, S. (1991) New endolithic cyanobacteria from the Arabian Gulf. 1. Hyella immanis sp. nov. Journal of Phycology 27, 766-780.

    Article  Google Scholar 

  • Baas-Becking, L.G.M. (1934) Geobiologie of Inleiding tot de Milieukunde. Van Stockum & Zoon, Den Haag, 263 pp.

    Google Scholar 

  • Bergman, B., Gallon, J.R., Rai, A.N. and Stal, L.J. (1997) N2 fixation by non-heterocystous cyanobac-teria. FEMS Microbiology Reviews 19, 139-185.

    CAS  Google Scholar 

  • Berman-Frank, I., Lundgren, P., Chen, Y.-B., Küpper, H., Kolber, Z., Bergman, B. and Falkowski, P. (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobac-terium Trichodesmium. Science 294, 1534-1537.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D., Friedman, E.I., Hofer, K.G., Grilli Caiola, M. and Ocampo-Friedmann, R. (2000) Ionization-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Applied and Environmental Microbiology 66, 1489-1492.

    Article  CAS  PubMed  Google Scholar 

  • Billi, D. and Potts, M. (2002) Life and death of dried prokaryotes. Research in Microbiology 153, 7-12.

    Article  CAS  PubMed  Google Scholar 

  • Blank, C.E. (2004) Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2, 1-20.

    Article  CAS  Google Scholar 

  • Blankenship, R.E. (1992) Origin and early evolution of photosynthesis. Photosynthesis Research 33, 91-111.

    Article  CAS  PubMed  Google Scholar 

  • Boles, B.R., Thoendel, M. and Singh, P.K. (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proceedings of the National Academy of Sciences 101, 16630-16635.

    Article  CAS  Google Scholar 

  • Brahamsha, B. (1996) An abundant cell-surface polypeptide is required for swimming by the nonfla-gellated marine cyanobacterium Synechococcus. Proceedings of the National Academy of Sciences 93, 6504-6509.

    Article  CAS  Google Scholar 

  • Bryant, D.A., Glazer, A.N. and Eiserling, F.A. (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Archives of Microbiology 110, 61-75.

    Article  CAS  PubMed  Google Scholar 

  • Buick, R. (1992) The antiquity of oxygenic photosynthesis - Evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74-77.

    Article  CAS  PubMed  Google Scholar 

  • Burger-Wiersma, T., Stal, L.J. and Mur, L.R. (1989) Prochlorothrix hollandica gen. nov., sp. nov., a fil-amentous oxygenic photoautotrophic prokaryote containing chlorophylls a and b: assignment to Prochlorotrichaceae fam. nov. and order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. International Journal of Systematic Bacteriology 39, 250-257.

    Google Scholar 

  • Chisholm, S.W., Olson, R.J., Zettler, E.R., Goericke, R., Waterbury, J.B. and Welschmeyer, N.A. (1988) A novel free-living Prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340-343.

    Article  Google Scholar 

  • Church, M.J., Short, C.M., Jenkins, B.D., Karl, D.M. and Zehr, J.P. (2005) Temporal patterns of nitrogenase (nifH) gene expression in theoligotrophic North Pacific Ocean. Applied and Environmental Microbiology 71, 5362-5370.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, Y., Jørgensen, B.B., Revsbech, N.P. and Poplawski, R. (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Applied and Environmental Microbiology 51, 398-407.

    CAS  PubMed  Google Scholar 

  • Davis, C.S. and McGillicuddy Jr, D.J. (2006) Transatlantic abundance if the N2-fixing colonial cyanobacterium Trichodesmium. Science 312, 1517-1520.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296, 1061-1063.

    Article  CAS  PubMed  Google Scholar 

  • Foti, M., Ma, S., Sorokin, D.Y., Rademaker, J.L.W., Kuenen, J.G. and Muyzer, G. (2006) Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiology Ecology 56, 95-101.

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson, C. and Bergman, B. (1997) Ultrastructural characterisation of cells specialised for nitro-gen fixation in a non-heterocystous cyanobacterium, Trichodesmium spp. Protoplasma 197, 76-85.

    Article  CAS  Google Scholar 

  • Gallon, J.R. (1992) Reconciling the incompatible: N2 fixation and O2. New Phytologist 122, 571-609.

    CAS  Google Scholar 

  • Garcia-Pichel, F. and Castenholz, R.W. (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Archives of Microbiology 153, 344-351.

    Article  CAS  Google Scholar 

  • Garcia-Pichel, F., Nübel, U. and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotol-erant cyanobacteria. Archives of Microbiology 169, 469-482.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F. and Pringault, O. (2001) Cyanobacteria track water in desert soils. Nature 413, 380-381.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F., Prufert-Bebout, L. and Muyzer, G. (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology 62, 3284-3291.

    CAS  PubMed  Google Scholar 

  • Gerasimenko, L.M., Mityushina, L.L. and Namsaraev, B.B. (2003) Microcoleus mats from alkaliphilic and halophilic communities. Microbiology 72, 71-79.

    Article  CAS  Google Scholar 

  • Goericke, R. and Repeta, D.J. (1992) The pigments of Prochlorococcus marinus - The presence of divinyl chlorophyll a and chlorophyll b in a marine prokaryote. Limnology and Oceanography 37,425-433.

    Article  CAS  Google Scholar 

  • Golden, J.W. and Yoon, H.S. (2003) Heterocyst development in Anabaena. Current Opinion in Microbiology 6, 557-563.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, A.R., Schaefer, M.R., Chiang, G.G. and Collier, J.L. (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews 57, 725-749.

    CAS  PubMed  Google Scholar 

  • Häder, D.P. (1987) Photosensory behavior in prokaryotes. Microbiological Reviews 51, 1-21.

    PubMed  Google Scholar 

  • Hartman, A. (1998) Photosynthesis and the origin of life. Origins of Life and Evolution of the Biosphere 28, 515-521.

    Article  CAS  PubMed  Google Scholar 

  • He, Q., Dolganov, N., Björkman, O. and Grossman, A.R. (2001) The high light-inducible polypep-tides in Synechocystis PCC6803. Expression and function in high light. Journal of Biological Chemistry 276, 306-314.

    Article  CAS  PubMed  Google Scholar 

  • Healey, F.P. (1982) Phosphate. In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 105-124.

    Google Scholar 

  • Hess, W.R., Partensky, F., van der Staay, G.W.M., Garcia-Fernandez, J.M., Börner, T. and Vaulot, D. (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proceedings of the National Academy of Sciences 93, 11126-11130.

    Article  CAS  Google Scholar 

  • Jaspers, E. and Overmann, J. (2004) Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Applied and Environmental Microbiology 70, 4831-4839.

    Article  CAS  PubMed  Google Scholar 

  • Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D. and Stal, L. (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57/58, 47-98.

    Article  CAS  Google Scholar 

  • Kazmierczak, J. and Kempe, S. (2004) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia - Discussion. Journal of Sedimentary Research 74, 314-317.

    Article  CAS  Google Scholar 

  • Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273, 1409-1412.

    Article  CAS  PubMed  Google Scholar 

  • Lewin, R.A. and Withers, N.W. (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256, 735-737.

    Article  CAS  Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environmental Microbiology 72, 3685-3695.

    Article  CAS  PubMed  Google Scholar 

  • López-López, A., Bartual, S.G., Stal, L., Onyshchenko, O. and Rodríguez-Valera, F. (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environmental Microbiology 7, 649-659.

    Article  PubMed  Google Scholar 

  • Lukas, K.J. and Golubic, S. (1983) New endolithic cyanophytes from the north Atlantic Ocean. II. Hyella gigas Lukas and Golubic sp. nov. from the Florida continental margin. Journal of Phycology 19, 129-136.

    Article  Google Scholar 

  • Mollenhauer, D., Bengtsson, R. and Lindstrøm, E.A. (1999) Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. European Journal of Phycology 34, 349-360.

    Google Scholar 

  • Montgomery, B.L. and Lagarias, J.C. (2002) Phytochrome ancestry: sensors of bilins and light. Trends in Plant Science 7, 357-366.

    Article  CAS  PubMed  Google Scholar 

  • Moore, D.J., Reed, R.H. and Stewart, W.D.P. (1987) A glycine betaine transport system in Aphanocapsa halophytica and other glycinebetaine-synthesising cyanobacteria. Archives of Microbiology 147, 399-405.

    Article  CAS  Google Scholar 

  • Mullineaux, C.W. (2001) How do cyanobacteria sense and respond to light? Molecular Microbiology 41,965-971.

    Article  CAS  PubMed  Google Scholar 

  • Ophir, T. and Gutnick, D.L. (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology 60, 740-745.

    CAS  PubMed  Google Scholar 

  • Ortega-Calvo, J.J. and Stal, L.J. (1991) Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture. Journal of General Microbiology 137, 1789-1797.

    CAS  Google Scholar 

  • Palenik, B. (2001) Chromatic adaptation in marine Synechococcus strains. Applied and Environmental Microbiology 67, 991-994.

    Article  CAS  PubMed  Google Scholar 

  • Palinska, K.A., Liesack, W., Rhiel, E. and Krumbein, W.E. (1996) Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Archives of Microbiology 166, 224-233.

    Article  CAS  PubMed  Google Scholar 

  • Pedrós-Alió, C. (2006) Marine microbial diversity: can it be determined? Trends in Microbiology 14, 257-263.

    Article  PubMed  CAS  Google Scholar 

  • Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews 58, 755-805.

    CAS  PubMed  Google Scholar 

  • Rippka, R., Waterbury, J. and Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. Archiv für Mikrobiologie 100, 419-436.

    CAS  Google Scholar 

  • Salem, K. and van Waasbergen, L.G. (2004) Light control of hliA transcription and transcript stabil-ity in the cyanobacterium Synechococcus elongatus strain PCC 7942. Journal of Bacteriology 186,1729-1736.

    Article  CAS  PubMed  Google Scholar 

  • Samsonoff, W.A. and MacColl, R. (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176, 400-405.

    Article  CAS  PubMed  Google Scholar 

  • Schopf, J.W. (1994) Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phaerozoic. Proceedings of the National Academy of Sciences 91, 6735-6742.

    Article  CAS  Google Scholar 

  • Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73-76.

    Article  CAS  PubMed  Google Scholar 

  • Smith, A.J. (1982) Modes of cyanobacterial carbon metabolism. In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 47-85.

    Google Scholar 

  • Staal, M., Meysman, F.J.R. and Stal, L.J. (2003a) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425, 504-507.

    Article  CAS  PubMed  Google Scholar 

  • Staal, M., Stal, L.J., te Lintel Hekkert, S. and Harren, F.J.M. (2003b) Light action spectra of N2 fix-ation by heterocystous cyanobacteria from the Baltic Sea. Journal of Phycology 39, 668-677.

    Article  CAS  Google Scholar 

  • Stal, L.J. (1991) The metabolic versatility of the mat-building cyanobacteria Microcoleus chthono-plastes and Oscillatoria limosa and its ecological significance. Algological Studies 64, 453-467.

    Google Scholar 

  • Stal, L.J. (1992) Poly(hydroxyalkanoate) in cyanobacteria: an overview. FEMS Microbiology Reviews 103,169-180.

    Article  CAS  Google Scholar 

  • Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 1-32.

    Article  CAS  Google Scholar 

  • Stal, L.J. (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. South African Journal of Botany 67, 399-410.

    CAS  Google Scholar 

  • Stal, L.J. and Moezelaar, R. (1997) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179-211.

    Article  CAS  Google Scholar 

  • Staley, J.T. and Gosink, J.J. (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annual Review of Microbiology 53, 189-215.

    Article  CAS  PubMed  Google Scholar 

  • Stanier, R.Y. and van Niel, C.B. (1962) The concept of a bacterium. Archiv für Mikrobiologie 42, 17-35.

    Article  CAS  PubMed  Google Scholar 

  • Stomp, M., Huisman, J., de Jongh, F., Veraart, A.J., Gerla, D., Rijkeboer, M., Ibelings, B.W., Wollenzien, U.I.A. and Stal, L.J. (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104-107.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam, A., Carpenter, E.J., Karentz, D. and Falkowski, P.G. (1999) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthesis action spectra. Limnology and Oceanography 44, 608-617.

    Article  CAS  Google Scholar 

  • Swanson, R.V., Ong, L.J., Wilbanks, S.M. and Glazer, A.N. (1991) Phycoerythrins of marine unicel-lular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. Journal of Biological Chemistry 266, 9528-9534.

    CAS  PubMed  Google Scholar 

  • Tandeau de Marsac, N. (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. Journal of Bacteriology 130, 82-91.

    CAS  PubMed  Google Scholar 

  • Tice, M.M. and Lowe, D.R. (2004) Photosyntheticmicrobial mats in the 3,416-Myr-old ocean. Nature 431,549-552.

    Article  CAS  PubMed  Google Scholar 

  • Walsby, A.E. (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proceedings of the Royal Society London B 226, 345-366.

    Article  CAS  Google Scholar 

  • Walsby, A.E. (1994) Gas vesicles. Microbiological Reviews 58, 94-144.

    CAS  Google Scholar 

  • Walsby, A.E., Hayes, P.K., Boje, R. and Stal, L.J. (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136, 407-417.

    Article  Google Scholar 

  • Ward, D.M., Ferris, M.J., Nold, S.C. and Bateson, M.M. (1998) A natural view of microbial biodi-versity within hot spring cyanobacterial mat communities. Microbiology and Molecular Biology Reviews 62, 1353-1370.

    CAS  PubMed  Google Scholar 

  • Waterbury, J.B., Willey, J.M., Franks, D.G., Valois, F.W. and Watson, S.W. (1985) A cyanobacterium capable of swimming motility. Science 230, 74-76.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, D.T. (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews 24, 263-290.

    Article  CAS  PubMed  Google Scholar 

  • Whitton, B.A. (1987) The biology of Rivulariaceae. In: P. Fay and C. Van Baalen (eds.) The Cyanobacteria, Elsevier Science Publishers, Amsterdam, pp. 513-534.

    Google Scholar 

  • Wilmotte, A. and Herdman, M. (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: D.R. Boone and R.W Castenholz (eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 1, 487-493.

    Google Scholar 

  • Wyman, M., Gregory, R.P.F. and Carr, N.G. (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230, 818-820.

    Article  CAS  PubMed  Google Scholar 

  • Yachi, S. and Loreau, M. (1999) Biodiversity and ecosystem productivity in a fluctuating environ-ment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96, 1463-1468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Stal, L.J. (2007). Cyanobacteria. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_36

Download citation

Publish with us

Policies and ethics