Skip to main content

How Structural Biology Has Directly Impacted Our Understanding of P2X Receptor Function and Gating

  • Protocol
  • First Online:
The P2X7 Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2510))

Abstract

P2X receptors are ATP-gated ion channels expressed in a wide variety of eukaryotic cells. They play key roles in diverse processes such as platelet activation, smooth muscle contraction, synaptic transmission, nociception, cell proliferation, and inflammation making this receptor family an important pharmacological target. Structures of P2X receptors solved by X-ray crystallography have been instrumental in helping to define mechanisms of molecular P2X receptor function. In 2009, the first X-ray structure of the P2X4 receptor subtype confirmed a trimeric stoichiometry and revealed the overall architecture of the functional ion channel. Subsequent X-ray structures have provided the molecular details to define the orthosteric ATP binding pocket, the orthosteric antagonist binding pocket, an allosteric antagonist binding pocket, and the pore architecture in each of the major conformational states of the receptor gating cycle. Moreover, the unique gating mechanism by which P2X receptor subtypes desensitize at differing rates, referred to as the helical recoil model of receptor desensitization, was discovered directly from X-ray structures of the P2X3 receptor. However, structures of P2X receptors solved by X-ray crystallography have only been able to provide limited information on the cytoplasmic domain of this receptor family, as this domain was always truncated to varying degrees in order to facilitate crystallization. Because the P2X7 receptor subtype has a significantly larger cytoplasmic domain that has been shown to be necessary for its ability to initiate apoptosis, an absence of structural information on the P2X7 receptor cytoplasmic domain has limited our understanding of its complex signaling pathways as well as its unusual ability to remain open without undergoing desensitization. This absence of cytoplasmic structural information for P2X7 receptors was recently overcome when the first full-length P2X7 receptor structures were solved by single-particle cryogenic electron microscopy. These structures finally provide insight into the large and unique P2X7 receptor cytoplasmic domain and revealed two novel structural elements and several surprising findings: first, a cytoplasmic structural element called the cytoplasmic ballast was identified that contains a dinuclear zinc ion complex and a high affinity guanosine nucleotide binding site and second, a palmitoylated membrane proximal structural element called the C-cys anchor was identified which prevents P2X7 receptor desensitization. This chapter will highlight the major structural and functional aspects of P2X receptors discovered through structural biology, with a key emphasis on the most recent cryogenic electron microscopy structures of the full-length, wild-type P2X7 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581

    CAS  PubMed  Google Scholar 

  2. Burnstock G (2004) Introduction: P2 receptors. Curr Top Med Chem 4(8):793–803. https://doi.org/10.2174/1568026043451014

    Article  CAS  PubMed  Google Scholar 

  3. Drury AN, Florey H, Florey ME (1929) The vascular reactions of the colonic mucosa of the dog to fright. J Physiol 68(2):173–180. https://doi.org/10.1113/jphysiol.1929.sp002604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1(4):239–248

    Article  CAS  Google Scholar 

  5. Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77(5):2551–2554. https://doi.org/10.1073/pnas.77.5.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33(5):999–1005. https://doi.org/10.1111/j.1471-4159.1979.tb05236.x

    Article  PubMed  Google Scholar 

  7. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371(6497):516–519. https://doi.org/10.1038/371516a0

    Article  CAS  PubMed  Google Scholar 

  8. Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324(2):219–225

    Article  CAS  Google Scholar 

  9. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  10. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372. https://doi.org/10.1016/B978-0-12-385526-8.00011-4

    Article  CAS  PubMed  Google Scholar 

  11. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14(1):1–18. https://doi.org/10.1007/s11302-017-9593-0

    Article  CAS  PubMed  Google Scholar 

  12. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S (2020) P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol 11:793. https://doi.org/10.3389/fphar.2020.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83(4):759–769. https://doi.org/10.1124/mol.112.083758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371(6497):519–523. https://doi.org/10.1038/371519a0

    Article  CAS  PubMed  Google Scholar 

  15. Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273(24):15177–15182. https://doi.org/10.1074/jbc.273.24.15177

    Article  CAS  PubMed  Google Scholar 

  16. Soto F, Garcia-Guzman M, Karschin C, Stuhmer W (1996) Cloning and tissue distribution of a novel P2X receptor from rat brain. Biochem Biophys Res Commun 223(2):456–460. https://doi.org/10.1006/bbrc.1996.0915

    Article  CAS  PubMed  Google Scholar 

  17. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460(7255):592–598. https://doi.org/10.1038/nature08198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212. https://doi.org/10.1038/nature11010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 538(7623):66–71. https://doi.org/10.1038/nature19367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karasawa A, Kawate T (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. elife 5:e22153. https://doi.org/10.7554/eLife.22153

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kasuya G, Fujiwara Y, Takemoto M, Dohmae N, Nakada-Nakura Y, Ishitani R, Hattori M, Nureki O (2016) Structural insights into divalent cation modulations of ATP-gated P2X receptor channels. Cell Rep 14(4):932–944. https://doi.org/10.1016/j.celrep.2015.12.087

    Article  CAS  PubMed  Google Scholar 

  22. McCarthy AE, Yoshioka C, Mansoor SE (2019) Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell 179(3):659–670.e613. https://doi.org/10.1016/j.cell.2019.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa-Junior HM, Sarmento Vieira F, Coutinho-Silva R (2011) C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 7(1):7–19. https://doi.org/10.1007/s11302-011-9215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2(4):315–321. https://doi.org/10.1038/7225

    Article  CAS  PubMed  Google Scholar 

  25. El-Moatassim C, Dubyak GR (1992) A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 267(33):23664–23673

    Article  CAS  Google Scholar 

  26. Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-gamma in the human THP-1 monocytic cell line. J Immunol 157(12):5627–5637

    CAS  PubMed  Google Scholar 

  27. Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A (2019) P2X7 interactions and signaling - making head or tail of it. Front Mol Neurosci 12:183. https://doi.org/10.3389/fnmol.2019.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Browne LE, Jiang LH, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31(5):229–237. https://doi.org/10.1016/j.tips.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683. https://doi.org/10.1124/pr.110.003129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Habermacher C, Dunning K, Chataigneau T, Grutter T (2016) Molecular structure and function of P2X receptors. Neuropharmacology 104:18–30. https://doi.org/10.1016/j.neuropharm.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  31. Kawate T (2017) P2X receptor activation. Adv Exp Med Biol 1051:55–69. https://doi.org/10.1007/5584_2017_55

    Article  PubMed  Google Scholar 

  32. Wang J, Yu Y (2016) Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 37(1):44–55. https://doi.org/10.1038/aps.2015.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young MT (2010) P2X receptors: dawn of the post-structure era. Trends Biochem Sci 35(2):83–90. https://doi.org/10.1016/j.tibs.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alves M, Beamer E, Engel T (2018) The metabotropic purinergic P2Y receptor family as novel drug target in epilepsy. Front Pharmacol 9:193. https://doi.org/10.3389/fphar.2018.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kugelgen I, Li B, Miras-Portugal MT, Novak I, Schoneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Muller CE (2020) Update of P2Y receptor pharmacology: IUPHAR review 27. Br J Pharmacol 177(11):2413–2433. https://doi.org/10.1111/bph.15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, Stevens RC, Kiselev E (2015) Nucleotides acting at P2Y receptors: connecting structure and function. Mol Pharmacol 88(2):220–230. https://doi.org/10.1124/mol.114.095711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98(3):1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  CAS  PubMed  Google Scholar 

  38. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264. https://doi.org/10.1038/nrd1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piirainen H, Ashok Y, Nanekar RT, Jaakola VP (2011) Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta 1808(5):1233–1244. https://doi.org/10.1016/j.bbamem.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  40. Wang HW, Wang JW (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26(1):32–39. https://doi.org/10.1002/pro.3022

    Article  CAS  PubMed  Google Scholar 

  41. Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, Yu EW (2021) A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nat Methods 18(1):69–75. https://doi.org/10.1038/s41592-020-01021-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kasuya G, Yamaura T, Ma XB, Nakamura R, Takemoto M, Nagumo H, Tanaka E, Dohmae N, Nakane T, Yu Y, Ishitani R, Matsuzaki O, Hattori M, Nureki O (2017) Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun 8(1):876. https://doi.org/10.1038/s41467-017-00887-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24(13):3413–3420. https://doi.org/10.1523/JNEUROSCI.5429-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56(1):208–215. https://doi.org/10.1016/j.neuropharm.2008.06.067

    Article  CAS  PubMed  Google Scholar 

  45. Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53(6):969–973

    CAS  PubMed  Google Scholar 

  46. Liu M, King BF, Dunn PM, Rong W, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296(3):1043–1050

    CAS  PubMed  Google Scholar 

  47. Allsopp RC, Farmer LK, Fryatt AG, Evans RJ (2013) P2X receptor chimeras highlight roles of the amino terminus to partial agonist efficacy, the carboxyl terminus to recovery from desensitization, and independent regulation of channel transitions. J Biol Chem 288(29):21412–21421. https://doi.org/10.1074/jbc.M113.464651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J Biol Chem 275(14):10190–10195. https://doi.org/10.1074/jbc.275.14.10190

    Article  CAS  PubMed  Google Scholar 

  49. Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X(2) receptor controlled by alternative splicing. FEBS Lett 404(2–3):294–298. https://doi.org/10.1016/s0014-5793(97)00128-2

    Article  CAS  PubMed  Google Scholar 

  50. Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G (2014) A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 79:603–615. https://doi.org/10.1016/j.neuropharm.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  51. Koshimizu T, Tomic M, Koshimizu M, Stojilkovic SS (1998) Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J Biol Chem 273(21):12853–12857

    Article  CAS  Google Scholar 

  52. Smith FM, Humphrey PP, Murrell-Lagnado RD (1999) Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J Physiol 520(Pt 1):91–99

    Article  CAS  Google Scholar 

  53. Werner P, Seward EP, Buell GN, North RA (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci U S A 93(26):15485–15490

    Article  CAS  Google Scholar 

  54. Zemkova H, He ML, Koshimizu TA, Stojilkovic SS (2004) Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors. J Neurosci 24(31):6968–6978. https://doi.org/10.1523/JNEUROSCI.1471-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fryatt AG, Evans RJ (2014) Kinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors. Mol Pharmacol 86(6):707–715. https://doi.org/10.1124/mol.114.095307

    Article  CAS  PubMed  Google Scholar 

  56. Karasawa A, Michalski K, Mikhelzon P, Kawate T (2017) The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. elife 6:e31186. https://doi.org/10.7554/eLife.31186

    Article  PubMed  PubMed Central  Google Scholar 

  57. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  Google Scholar 

  58. Allsopp RC, Evans RJ (2015) Contribution of the juxtatransmembrane intracellular regions to the time course and permeation of ATP-gated P2X7 receptor ion channels. J Biol Chem 290(23):14556–14566. https://doi.org/10.1074/jbc.M115.642033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Egan TM, Haines WR, Voigt MM (1998) A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 18(7):2350–2359

    Article  CAS  Google Scholar 

  60. Kracun S, Chaptal V, Abramson J, Khakh BS (2010) Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem 285(13):10110–10121. https://doi.org/10.1074/jbc.M109.089185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li M, Chang TH, Silberberg SD, Swartz KJ (2008) Gating the pore of P2X receptor channels. Nat Neurosci 11(8):883–887. https://doi.org/10.1038/nn.2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pippel A, Stolz M, Woltersdorf R, Kless A, Schmalzing G, Markwardt F (2017) Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc Natl Acad Sci U S A 114(11):E2156–E2165. https://doi.org/10.1073/pnas.1610414114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 16(12):3446–3454. https://doi.org/10.1093/emboj/16.12.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang R, Taly A, Lemoine D, Martz A, Cunrath O, Grutter T (2012) Tightening of the ATP-binding sites induces the opening of P2X receptor channels. EMBO J 31(9):2134–2143. https://doi.org/10.1038/emboj.2012.75

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li M, Kawate T, Silberberg SD, Swartz KJ (2010) Pore-opening mechanism in trimeric P2X receptor channels. Nat Commun 1:44. https://doi.org/10.1038/ncomms1048

    Article  CAS  PubMed  Google Scholar 

  66. Degrève L, Vechi SM, Junior CQ (1996) The hydration structure of the Na+ and K+ ions and the selectivity of their ionic channels. Biochim Biophys Acta Bioenerg 1274(3):149–156. https://doi.org/10.1016/0005-2728(96)00019-9

    Article  Google Scholar 

  67. Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 276(33):30934–30941. https://doi.org/10.1074/jbc.M103366200

    Article  CAS  PubMed  Google Scholar 

  68. Gonnord P, Delarasse C, Auger R, Benihoud K, Prigent M, Cuif MH, Lamaze C, Kanellopoulos JM (2009) Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 23(3):795–805. https://doi.org/10.1096/fj.08-114637

    Article  CAS  PubMed  Google Scholar 

  69. Shipston MJ (2011) Ion channel regulation by protein palmitoylation. J Biol Chem 286(11):8709–8716. https://doi.org/10.1074/jbc.R110.210005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Young CNJ, Gorecki DC (2018) P2RX7 purinoceptor as a therapeutic target-the second coming? Front Chem 6:248. https://doi.org/10.3389/fchem.2018.00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X(7) receptor: death or life? Purinergic Signal 1(3):219–227. https://doi.org/10.1007/s11302-005-6322-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Quick M, Javitch JA (2007) Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc Natl Acad Sci U S A 104(9):3603–3608. https://doi.org/10.1073/pnas.0609573104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22

    Article  CAS  Google Scholar 

  74. Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277(37):34017–34023. https://doi.org/10.1074/jbc.M205120200

    Article  CAS  PubMed  Google Scholar 

  75. Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332(1):17–27. https://doi.org/10.1016/j.bbrc.2005.04.087

    Article  CAS  PubMed  Google Scholar 

  76. Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24(9):3393–3404. https://doi.org/10.1096/fj.09-153601

    Article  CAS  PubMed  Google Scholar 

  77. Ugur M, Ugur O (2019) A mechanism-based approach to P2X7 receptor action. Mol Pharmacol 95(4):442–450. https://doi.org/10.1124/mol.118.115022

    Article  CAS  PubMed  Google Scholar 

  78. Kochanczyk T, Drozd A, Krezel A (2015) Relationship between the architecture of zinc coordination and zinc binding affinity in proteins--insights into zinc regulation. Metallomics 7(2):244–257. https://doi.org/10.1039/c4mt00094c

    Article  CAS  PubMed  Google Scholar 

  79. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106(5):750–757. https://doi.org/10.1002/jcb.22049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD (2001) New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol 79(2):170–177. https://doi.org/10.1046/j.1440-1711.2001.00986.x

    Article  CAS  PubMed  Google Scholar 

  81. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14(3–4):315–330. https://doi.org/10.1023/a:1012993017026

    Article  CAS  PubMed  Google Scholar 

  82. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. https://doi.org/10.1146/annurev.physiol.70.113006.100630

    Article  CAS  PubMed  Google Scholar 

  83. Johnson DK, Karanicolas J (2016) Ultra-high-throughput structure-based virtual screening for small-molecule inhibitors of protein-protein interactions. J Chem Inf Model 56(2):399–411. https://doi.org/10.1021/acs.jcim.5b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kumar A, Zhang KY (2015) Hierarchical virtual screening approaches in small molecule drug discovery. Methods 71:26–37. https://doi.org/10.1016/j.ymeth.2014.07.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Michael Godsey and Adam Oken for feedback on the manuscript. I would also like to thank Lori Vaskalis and Alanna McCarthy for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Mansoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mansoor, S.E. (2022). How Structural Biology Has Directly Impacted Our Understanding of P2X Receptor Function and Gating. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics