Skip to main content

Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome

  • Chapter
Principles of Clinical Medicine for Space Flight

The three maladies to be discussed in this chapter—decompression sickness, arterial gas embolism, and ebullism—all arise from changes in ambient atmospheric pressure, which is the pressure of the gas immediately surrounding an individual. In space flight, the largest planned change in ambient atmospheric pressure is associated with extravehicular activities (EVAs) that take place as the crew moves back and forth between the crew cabin and the environment outside, where they wear pressurized suits. The cabin atmospheric pressure in all current spacecraft typically approximates the atmospheric pressure found at sea level, namely 1 atm absolute pressure (ata) (or 101 kPa). From a strictly physiological point of view, this design specification is probably not optimal, but it serves other interests such as simplifying the conduct of biomedical research. Selected space suit pressures represent a compromise between engineering concerns, which dictate that the internal pressure of a space suit be low to maximize flexibility, and physiological risks. (The space suit used in the current U.S. space program, the extravehicular mobility unit, is pressurized to 30 kPa (4.3 psia); the Orlan suit, used in the current Russian space program, is pressurized to 38 kPa (5.5 psia).) Consequently, crewmembers performing EVAs experience substantial shifts in ambient atmospheric pressure. Unplanned crew cabin or space suit decompressions are also possible while living and working in the hard vacuum of space. The pathophysiological consequences of such exposures are the subject of this chapter [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golding FC, Griffiths P, Hempleman HV, et al. Decompression sickness during construction of the Dartford Tunnel. Br J Ind Med 1960; 17:167-180.

    PubMed  CAS  Google Scholar 

  2. U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washing-ton, DC: U.S. Navy; 1993:8-22-8-26.

    Google Scholar 

  3. Weien RW. Altitude decompression sickness: The U.S. Army experience. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992; 379-383.

    Google Scholar 

  4. U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washing-ton, DC: U.S. Navy; 1993:8-66.

    Google Scholar 

  5. Wirjosemito SA, Touhey JE, Workman WT. Type II altitude decompression sickness (DCS): U.S. Air Force experience with 133 cases. Aviat Space Environ Med 1989; 60:256-262.

    PubMed  CAS  Google Scholar 

  6. Dutka AJ. Clinical findings in decompression illness: A proposed terminology. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyper-baric Medical Society; 1996:1-9.

    Google Scholar 

  7. Bove AA. Nomenclature of pressure disorders. Undersea Hyperb Med 1997; 24:1-2.

    PubMed  CAS  Google Scholar 

  8. Zheng Q, Durben DJ, Wolf GH, Angell CA. Liquids at large negative pressures: Water at the homogeneous nucleation limit. Science 1991; 254:829-832.

    PubMed  CAS  Google Scholar 

  9. Weathersby PK, Homer LD, Flynn ET. Homogeneous nucleation of gas bubbles in vivo. J Appl Physiol 1982; 53:940-946.

    PubMed  CAS  Google Scholar 

  10. Eckenhoff RG, Osborne SF, Parker JW, Bondi KR. Direct ascent from shallow air saturation exposures. Undersea Biomed Res 1986; 13:305-316.

    PubMed  CAS  Google Scholar 

  11. Dixon GA. Evaluation of 9.5 psia as a suit pressure for prolonged extravehicular activity. Presented at the 23rd Annual Survival and Flight Equipment Symposium; 1985, Las Vegas, NV.

    Google Scholar 

  12. Vann RD, Grimstad J, Nielsen CH. Evidence for gas nuclei in decompressed rats. Undersea Biomed Res 1980; 7:107-112.

    PubMed  CAS  Google Scholar 

  13. Evans A, Walder DN. Significance of gas micronuclei in the aetiol-ogy of decompression sickness. Nature 1969; 222:251-252.

    PubMed  CAS  Google Scholar 

  14. McDonough PM, Hemmingsen EA. Bubble formation in crusta-ceans following decompression from hyperbaric gas exposures. J Appl Physiol 1984; 56:513-519.

    PubMed  CAS  Google Scholar 

  15. McDonough PM, Hemmingsen EA. Swimming movements ini-tiate bubble formation in fish decompressed from elevated gas pressures. Comp Biochem Physiol A. 1985; 81:209-212.

    PubMed  CAS  Google Scholar 

  16. Hemmingsen EA. Bubble formation mechanisms. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:153-169.

    Google Scholar 

  17. Hayward ATJ. Tribonucleation of bubbles. Br J Appl Phys 1967; 18:641-644.

    CAS  Google Scholar 

  18. McDonough PM, Hemmingsen EA. Bubble formation in crabs induced by limb motions after decompression. J Appl Physiol 1984; 57:117-122.

    PubMed  CAS  Google Scholar 

  19. Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol 1979; 47:537-543.

    PubMed  CAS  Google Scholar 

  20. Bove AA, Hallenbeck JM, Elliott DH. Circulatory responses to venous air embolism and decompression sickness in dogs. Undersea Biomed Res 1974; 1:207-220.

    PubMed  CAS  Google Scholar 

  21. Butler BD, Katz J. Vascular pressures and passage of gas emboli through the pulmonary circulation. Undersea Biomed Res 1988; 15:203-209.

    PubMed  CAS  Google Scholar 

  22. Lynch PR, Brigham M, Tuma R, et al. Origin and time course of gas bubbles following rapid decompression in the hamster. Undersea Biomed Res 1985; 12:105-114.

    PubMed  CAS  Google Scholar 

  23. Spencer MP, Oyama Y. Pulmonary capacity for dissipation of venous gas emboli. Aerospace Med 1971; 42:822-827.

    PubMed  CAS  Google Scholar 

  24. Okang GI, Vann RD. Bubble formation in blood and urine. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:177-178.

    Google Scholar 

  25. Eatock BC, Nishi RY. Analysis of Doppler ultrasound data for the evaluation of dive profiles. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Sym-posium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:183-195.

    Google Scholar 

  26. Bayne CG, Hunt WS, Johanson DC, et al. Doppler bubble detec-tion and decompression sickness: A prospective trial. Undersea Biomed Res 1985; 12:327-332.

    PubMed  CAS  Google Scholar 

  27. Hemmingsen BB, Steinberg NA, Hemmingsen EA. Intracellu-lar gas supersaturation tolerances of erythrocytes and resealed ghosts. Biophys J 1985; 47:491-496.

    PubMed  CAS  Google Scholar 

  28. Hemmingsen EA, Hemmingsen BB. Bubble formation proper-ties of hydrophobic particles in water and cells of Tetrahymena. Undersea Biomed Res 1990; 17:67-78.

    PubMed  CAS  Google Scholar 

  29. Hills BA, James PB. Spinal decompression sickness: Mechanical studies and a model. Undersea Biomed Res 1982; 9:185-201.

    PubMed  CAS  Google Scholar 

  30. Powell MR, Spencer MP. The pathophysiology of decompres-sion sickness and the effects of Doppler detectable bubbles. Technical Report on ONR Contract N00014-73-C-0094; 1981.

    Google Scholar 

  31. Gersh I, Catchpole HR. Appearance and distribution of gas bub-bles in rabbits decompressed to altitude. J Cell Comp Physiol 1946; 28:253-268.

    CAS  Google Scholar 

  32. Chryssanthou C, Palaia T, Goldstein G, Stenger R. Increase in blood-brain barrier permeability by altitude decompression. Aviat Space Environ Med 1987; 58:1082-1086.

    PubMed  CAS  Google Scholar 

  33. Vann RD. Vacuum phenomena: An annotated bibliography. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:179-195.

    Google Scholar 

  34. Bason R. Altitude chamber DCS: USN experience 1981-1988. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decom-pression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992; 395-413.

    Google Scholar 

  35. Lee WH, Hairston P. Structural effects on blood proteins at the gas-blood interface. Fed Proc 1971; 30:1615-1622.

    PubMed  CAS  Google Scholar 

  36. Ogston D, Bennett B. Surface mediated reactions in the forma-tion of thrombin, plasmin, and kallikrein. Br Med Bull 1978; 34:107-112.

    PubMed  CAS  Google Scholar 

  37. Chenoweth DE, Cooper SW, Hugli TE, et al. Complement activa-tion during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med 1981; 304:497-503.

    PubMed  CAS  Google Scholar 

  38. Ward CA, Koheil A, McCulloch D, et al. Activation of com-plement at plasma-air or serum-air interface of rabbits. J Appl Physiol 1986; 60:1651-1658.

    PubMed  CAS  Google Scholar 

  39. Philp RB, Ackles KN, Inwood MJ et al. Changes in the hemo-static system and in blood and urine chemistry of human subjects following decompression from a hyperbaric environment. Aerosp Med 1972a; 43:498-505.

    PubMed  CAS  Google Scholar 

  40. Philp RB. A review of blood changes associated with compres-sion-decompression: Relationship with decompression sickness. Undersea Biomed Res 1974; 1:117-150.

    CAS  Google Scholar 

  41. Bove AA. The basis for drug therapy in decompression sickness. Undersea Biomed Res 1982; 9:91-111.

    PubMed  CAS  Google Scholar 

  42. Philp RB, Inwood MJ, Warren BA. Interactions between gas bubbles and components of the blood: Implications in decom-pression sickness. Aerosp Med 1972b; 43:946-953.

    CAS  Google Scholar 

  43. Thorsen T, Lie RT, Holmsen H. Induction of platelet aggrega-tion in vitro by microbubbles of nitrogen. Undersea Biomed Res 1989; 16:453-464.

    PubMed  CAS  Google Scholar 

  44. Haller C, Sercombe R, Verrechia C, Fritsch H, et al. Effect of the muscarinic agonist carbachol on pial arteries in vivo after endothelial damage by air embolism. J Cereb Blood Flow Metab 1987; 7:605-611.

    PubMed  CAS  Google Scholar 

  45. Anderson DK, Means ED. Iron-induced lipid peroxidation in spinal cord: Protection with mannitol and methylprednisolone. J Free Radic Biol Med 1985; 1:59-64.

    PubMed  CAS  Google Scholar 

  46. Hardman JM, Beckman EL. Pathogenesis of central nervous system decompression sickness. Undersea Biomed Res 1990; 17:95-96.

    Google Scholar 

  47. Anderson DA, Nagasawa GK, Norfleet WT, et al. Oxygen pres-sures between 0.12 and 2.5 atmospheres; circulatory function and nitrogen elimination. Undersea Biomed Res 1991; 18:279-292.

    PubMed  CAS  Google Scholar 

  48. Van Liew HD, Schoenfisch WH, Olszowka AJ. Exchanges of nitrogen between a gas pocket and tissue in a hyperbaric environ-ment. Respir Physiol 1969; 6:23-28.

    Google Scholar 

  49. Vann RD, Thalmann ED. Decompression physiology and prac-tice. In: Bennett PB, Elliott DH (eds.), The Physiology and Medi-cine of Diving. London: Saunders; 1993:376-432.

    Google Scholar 

  50. Waligora JM, Horrigan D Jr, Conkin J, Hadley AT III. Verifica-tion of an altitude decompression sickness prevention protocol for Shuttle operation utilizing a 10.2 psi pressure stage. Houston, TX: NASA Johnson Space Center; 1984. NASA TM-58529.

    Google Scholar 

  51. Hempleman HV. History of decompression procedures. In: Ben-nett PB, Elliott DH (eds.), The Physiology and Medicine of Div-ing. London: Saunders; 1993:342-375.

    Google Scholar 

  52. Brew SK, Kenny CT, Webb RK, Gorman DF. The outcome of 125 divers with dysbaric illness treated by recompression at HMNZS PHILOMEL. SPUMS J 1990; 20:226-230.

    Google Scholar 

  53. Erde A, Edmonds C. Decompression sickness: A clinical series. J Occup Med 1975; 17:324-328.

    PubMed  CAS  Google Scholar 

  54. Bennett PB, Coggin R, Roby J. Control of HPNS in humans dur-ing rapid compression with trimix to 650 m (2131 ft). Undersea Biomed Res 1981; 8:85-100.

    PubMed  CAS  Google Scholar 

  55. Piccard J. Aeroemphysema and the birth of gas bubbles. Proc Staff Meetings Mayo Clinic 1941; 16:700-704.

    Google Scholar 

  56. Neubauer JC, Dixon JP, Herndon CM. Fatal pulmonary decom-pression sickness: A case report. Aviat Space Environ Med 1988; 59:1181-1184.

    PubMed  CAS  Google Scholar 

  57. Dixon JP. Death from altitude-induced decompression sickness: Major pathophysiologic factors. In: Pilmanis AA (ed.), Proceed-ings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Sys-tems Command; 1992:97-105.

    Google Scholar 

  58. Fryer DI. Severe and fatal post-descent shock. In: The Advisory Group for Aerospace Research and Development. Subatmospheric Decompression Sickness in Man. Brussels: North Atlantic Treaty Organization; 1969. AGARD monograph 123.

    Google Scholar 

  59. Baumgartner N, Weien RW. Decompression sickness due to USAF altitude chamber exposure (1985-1987). In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sick-ness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:363-376.

    Google Scholar 

  60. Weien RW. Comments. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:371.

    Google Scholar 

  61. Harding RW. DCS experience outside North America. In: Pil-manis AA (ed.), Proceedings of the 1990 Hypobaric Decom-pression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:467-471.

    Google Scholar 

  62. Ferris EB, Engel GL. The clinical nature of high altitude decom-pression sickness. In: Fulton JF (ed.), Decompression Sickness. Philadelphia, PA: Saunders; 1951:4-52.

    Google Scholar 

  63. Barnard EE, Hanson JM, Rowton-Lee MA, et al. Post-decom-pression shock due to extravasation of plasma. BMJ 1966; 5506:154-155.

    Google Scholar 

  64. Powell MR, Waligora JM, Norfleet WT, Kumar KV. Project Argo: Gas Phase Formation in Simulated Microgravity. Houston, TX: NASA Johnson Space Center; 1993. NASA TM-104762.

    Google Scholar 

  65. Hills BA. Intermittent flow in tendon capillary bundles. J Appl Physiol 1979; 46:696-702.

    PubMed  CAS  Google Scholar 

  66. McCallum RI, Harrison JAB. Dysbaric osteonecrosis: Aseptic necrosis of bone. In: Bennett PB, Elliott DH (eds.), The Physiol-ogy and Medicine of Diving. London: Saunders; 1993:563-584.

    Google Scholar 

  67. Hodgson CJ, Davis JC, Randolph CL, Chambers GH. Seven year follow-up x-ray survey for bone changes in low pressure cham-ber operators. Aerospace Med 1968; 39:417-421.

    PubMed  CAS  Google Scholar 

  68. Dick APK, Massey EW. Neurologic presentation of decompres-sion sickness and air embolism in sport divers. Neurology 1985; 35:667-671.

    PubMed  CAS  Google Scholar 

  69. Peters BH, Levin HS, Kelly PJ. Neurologic and psychologic manifestations of decompression sickness in divers. Neurology 1977; 27:125-127.

    PubMed  CAS  Google Scholar 

  70. Vaernes RJ, Eidsvik S. Central nervous dysfunction after near miss accidents in diving. Aviat Space Environ Med 1982; 53:803-807.

    PubMed  CAS  Google Scholar 

  71. Adkisson GH, Macleod MA, Hodgson M, et al. Cerebral perfu-sion deficits in dysbaric illness. Lancet 1989; 15:119-122.

    Google Scholar 

  72. Francis TJR, Dutka AJ, Hallenbeck JM. Pathophysiology of decompression sickness. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:170-187.

    Google Scholar 

  73. Francis TJR, Pearson RR, Robertson AG, et al. Central nervous system decompression sickness: Latency of 1070 human cases. Undersea Biomed Res 1988; 15:403-418.

    PubMed  CAS  Google Scholar 

  74. Francis TJR, Pezeshkpour GH, Dutka AJ. Arterial gas embolism as a pathophysiologic mechanism for spinal cord decompression sickness. Undersea Biomed Res 1989; 16:439-452.

    PubMed  CAS  Google Scholar 

  75. Hallenbeck JM, Bove AA, Elliott DH. Mechanisms underlying spinal cord damage in decompression sickness. Neurology 1975; 25:308-316.

    PubMed  CAS  Google Scholar 

  76. Hallenbeck JM. Cinephotomicrography of dog spinal vessels during cord-damaging decompression sickness. Neurology 1976; 26:190-199.

    PubMed  CAS  Google Scholar 

  77. Batson OV. The valsalva maneuver and the vertebral vein sys-tem. Angiology 1942; 11:443-447.

    Google Scholar 

  78. Onuigbo WI. Batson’s theory of vertebral venous metastasis: A review. Oncology 1975; 32:145-150.

    CAS  Google Scholar 

  79. Hughes JT. Venous infarction of the spinal cord. Neurology 1971; 21:794-800.

    PubMed  CAS  Google Scholar 

  80. Francis TJR, Pezeshkpour GH, Dutka AJ, et al. Is there a role for the autochthonous bubble in the pathogenesis of spinal cord decom-pression sickness? J Neuropathol Exp Neurol 1988; 47:475-487.

    PubMed  CAS  Google Scholar 

  81. Mastaglia FL, McCallum RI, Walder DN. Myelopathy associ-ated with decompression sickness. A report of six cases. Clin Exp Neurol 1983; 19:54-59.

    PubMed  CAS  Google Scholar 

  82. Palmer AC, Calder IM, McCallum RI, Mastaglia FL. Spinal cord degeneration in a case of “recovered” spinal decompression sick-ness. BMJ 1981; 283:888.

    PubMed  CAS  Google Scholar 

  83. Palmer AC, Calder IM, Hughes JT. Spinal cord damage in active divers. Undersea Biomed Res 1988; 15(Suppl.):70.

    Google Scholar 

  84. Giertsen JC, Sandstad E, Morild I, et al. An explosive decom-pression accident. Am J Forensic Med Pathol 1988; 9:94-101.

    PubMed  CAS  Google Scholar 

  85. Calder IM, Palmer AC, Hughes JT, et al. Spinal cord degenera-tion associated with type II decompression sickness: Case report. Paraplegia 1989; 27:51-57.

    PubMed  CAS  Google Scholar 

  86. Sykes JJW, Yaffee LJ. Light and electron microscopic alterations in spinal cord myelin sheaths after decompression sickness. Undersea Biomed Res 1985; 12:251-258.

    PubMed  CAS  Google Scholar 

  87. Francis TJR. Neurologic complications of decompression illness—mechanisms and pathology. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:167-186.

    Google Scholar 

  88. Francis TJR, Hardman JM, Beckman EL. A pressure threshold for in-situ bubble formation in the canine spinal cord. Undersea Biomed Res 1990; 17(Suppl.):69.

    Google Scholar 

  89. Haymaker W, Davidson C. Fatalities resulting from exposure to simulated high altitudes in decompression chambers. A clinico-pathological study. J Neuropathol Exp Neurol 1950; 9:29-59.

    PubMed  CAS  Google Scholar 

  90. Dunn JE, Bancroft RW, Haymaker W, Foft JW. Experimental animal decompressions to less than 2 mmHg absolute (pathologic effects). Aerospace Med 1965; 36:725-732.

    PubMed  Google Scholar 

  91. Helps SC, Parsons DW, Reilly PL, Gorman DF. The effect of gas emboli on rabbit cerebral blood flow. Stroke 1990; 21:94-99.

    PubMed  CAS  Google Scholar 

  92. Nishimoto R, Wolman M, Spatz M, Klatzo I. Pathophysiologic correlations in the blood brain barrier damage due to air embolism. Adv Neurol 1978; 20:237-244.

    PubMed  CAS  Google Scholar 

  93. Chryssanthou C, Springer M, Lipshitz S. Blood-brain and blood-lung barrier alteration by dysbaric exposure. Undersea Biomed Res 1977; 4:117-128.

    PubMed  CAS  Google Scholar 

  94. Nohara A, Yusa T. Reversibility in blood-brain barrier, micro-circulation, and histology in rat brain after decompression. Undersea Hyperbaric Med 1997; 24:15-21.

    CAS  Google Scholar 

  95. Dutka AJ, Kochanek PM, Hallenbeck JM. Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 1989; 20:390-395.

    PubMed  CAS  Google Scholar 

  96. Fritz H, Hossman KA. Arterial air embolism in the cat brain. Stroke 1979; 10:581-589.

    PubMed  CAS  Google Scholar 

  97. Stone DA, Godard J, Corretti MC, et al. Patent foramen ovale: Association between the degree of shunt by contrast trans-esophageal echocardiography and the risk of future ischemic neurologic events. Am Heart J 1996; 131:158-161.

    PubMed  CAS  Google Scholar 

  98. Di Tullio M, Sacco RL, Venketasubramanian N, et al. Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993; 24:1020-1024.

    PubMed  CAS  Google Scholar 

  99. Job FP, Ringelstein EB, Grafen Y, et al. Comparison of tran-scranial contrast Doppler sonography and transesophageal contrast echocardiography for the detection of patent foramen ovale in young stroke patients. Am J Cardiol 1994; 74:381-384.

    PubMed  CAS  Google Scholar 

  100. Germonpre P, Dendale P, Unger P, et al. Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol 1998; 84:1622-1626.

    PubMed  CAS  Google Scholar 

  101. Knauth M, Ries S, Pohimann S, et al. Cohort study of multiple brain lesions in sport divers: Role of a patent foramen ovale. BMJ 1997; 314:701-705.

    PubMed  CAS  Google Scholar 

  102. Clark JB, Hayes GB. Patent foramen ovale and type II altitude decompression sickness (abstract). Aviat Space Environ Med 1991; 62:445.

    Google Scholar 

  103. Gallagher KL, Hopkins EW, Clark JB, et al. U.S. Navy experience with type II decompression sickness and the association with patent foramen ovale (abstract). Aviat Space Environ Med 1996; 67:712.

    Google Scholar 

  104. Kerut EK, Norfleet WT, Plotnick GD, et al. Patent foramen ovale: A review of associated conditions and the impact of physiological size. J Am Coll Cardiol 2001; 38:613-623.

    PubMed  CAS  Google Scholar 

  105. Heimbach RD, Sheffield PJ. Decompression sickness and pulmonary overpressure accidents. In: DeHart RL (ed.), Fundamentals of Aerospace Medicine. 2nd edn. Baltimore, MD: Williams & Wilkins; 1996:131-161.

    Google Scholar 

  106. Isakov AP, Broome JR, Dutka AJ. Acute carpal tunnel syndrome in a diver: Evidence of peripheral nervous system involvement in decompression illness. Ann Emerg Med 1996; 28:90-93.

    PubMed  CAS  Google Scholar 

  107. Ball R, Auker CR, Ford GC, Lawrence D. Decompression sickness presenting as forearm swelling and peripheral neuropathy: A case report. Aviat Space Environ Med 1998; 69:690-692.

    CAS  Google Scholar 

  108. Shields TG, Minsaas B, Elliott DH, McCallum (eds.), Long Term Neurologic Consequences of Deep Diving. Stavanger, Norway: European Undersea Biomedical Society; 1983.

    Google Scholar 

  109. Edmonds C, Hayward L. Intellectual impairment with diving: A review. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:877-886.

    Google Scholar 

  110. Palmer AC, Calder IM, Hughes JT. Spinal cord degeneration in divers. Lancet 1987; 12:1365-1366.

    Google Scholar 

  111. Cooke JP, Bancroft RW. Heart rate response of anesthetized and unanesthetized dogs to noise and near-vacuum decompression. Aerospace Med 1966; 37:704-709.

    PubMed  CAS  Google Scholar 

  112. Bendrick GA, Ainscough MJ, Pilmanis AA, et al. Prevalence of decompression sickness among U-2 pilots. Aviat Space Environ Med 1996; 67:199-206.

    PubMed  CAS  Google Scholar 

  113. Davis JC, Elliott DH. Treatment of decompression disorders. In: Bennett PB, Elliott DH (eds.), The Physiology and Medicine of Diving. London: Bailliere Tindall; 1982:475-476.

    Google Scholar 

  114. Butler BD, Hills BA. Transpulmonary passage of venous air emboli. J Appl Physiol 1985; 59:543-547.

    PubMed  CAS  Google Scholar 

  115. Marquez J, Sladen A, Gendell H, et al. Paradoxical cerebral air embolism without an intracardiac septal defect. J Neurosurg 1981; 55:997-1000.

    PubMed  CAS  Google Scholar 

  116. Butler BD, Luehr S, Katz J. Venous gas embolism: Time course of residual pulmonary intravascular bubbles. Undersea Biomed Res 1989; 16:21-29.

    PubMed  CAS  Google Scholar 

  117. Butler BD, Conkin J, Luehr S. Pulmonary hemodynamics, extravascular lung water and residual gas bubbles following low dose venous gas embolism in dogs. Aviat Space Environ Med 1989; 60:1178-1182.

    PubMed  CAS  Google Scholar 

  118. Ohkunda K, Nakahara K, Binder A, Staub NC. Venous air emboli in sheep: Reversible increase in lung microvascular per-meability. J Appl Physiol 1981; 51:887-894.

    Google Scholar 

  119. Butler BD. Pulmonary effects of decompression stress in the rat. Undersea Biomed Res 1991; 18(Suppl.):74.

    Google Scholar 

  120. Levy SE, Stein M, Totten RS, et al. Ventilation-perfusion abnormalities in experimental pulmonary embolism. J Clin Invest 1965; 44:1699-1707.

    PubMed  CAS  Google Scholar 

  121. Soloff LA, Rodman T. Acute pulmonary embolism. 1. Review. Am Heart J 1967; 74:710-724.

    PubMed  CAS  Google Scholar 

  122. Davis JC. Treatment of decompression sickness and arterial gas embolism. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:249-260.

    Google Scholar 

  123. Broome JR, Dick EJ Jr. Neurological decompression illness in swine. Aviat Space Environ Med 1996; 67:217-213.

    Google Scholar 

  124. Elliott DH, Moon RE. Manifestations of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders; 1993:481-505.

    Google Scholar 

  125. Ikeda T, Oiwa H, Llewellyn ME. Decompression sickness with subsequent lymphatic manifestation following recompression treatment: A case report in a heavy drinker. Tokai J Exp Clin Med 1988; 13:79-83.

    PubMed  CAS  Google Scholar 

  126. Lambertsen CJ. Relations of isobaric gas counterdiffusion and decompression gas lesion diseases. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:87-103.

    Google Scholar 

  127. Hodgson M, Beran RG, Shirtley G. The role of computed tomography in the assessment of neurologic sequelae of decompression sickness. Arch Neurol 1988; 45:1033-1035.

    PubMed  CAS  Google Scholar 

  128. Rinck PA, Svihus R, de Francisco P. MR imaging of the central nervous system in divers. J Magn Reson Imaging 1991; 1:293-299.

    PubMed  CAS  Google Scholar 

  129. Wilmshurst PT, O’Doherty MJ, Nunan TO. Cerebral perfusion deficits in divers with neurological decompression illness. Nucl Med Commun 1993; 14:117-120.

    PubMed  CAS  Google Scholar 

  130. Lowe VJ, Hoffman JM, Hanson MW, et al. Cerebral imaging of decompression injury patients with 18-F-2-fluoro-2-deoxyglucose positron emission tomography. Undersea Hyperbaric Med 1994; 21:103-114.

    CAS  Google Scholar 

  131. Hanson MW, Jordan LK III. Neurological imaging in patients with decompression illness. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:140-151.

    Google Scholar 

  132. Zwirewich CV, Muller NL, Abboud RT, Lepawsky M. Non-cardiogenic pulmonary edema caused by decompression sickness: Rapid resolution following hyperbaric therapy. Radiology 1987; 163:81-82.

    CAS  Google Scholar 

  133. Garrett JL, Bradshaw P. The USAF chamber training flight profiles. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:347-359.

    Google Scholar 

  134. Weien RW, Baumgartner N. Altitude decompression sickness: Hyperbaric therapy results in 528 cases. Aviat Space Environ Med 1990; 61:833-836.

    PubMed  CAS  Google Scholar 

  135. Bason R, Yacavone D. Decompression sickness: U.S. Navy altitude chamber experience 1 October 1981 to 30 September 1988. Aviat Space Environ Med 1991; 62:1180-1184.

    PubMed  CAS  Google Scholar 

  136. Kumar VK, Billica RD, Waligora JM. Utility of Doppler-detectable microbubbles in the diagnosis and treatment of decompression sickness. Aviat Space Environ Med 1997; 68:151-158.

    PubMed  CAS  Google Scholar 

  137. Kannan N, Raychaudhuri A, Pilmanis AA. A loglogistic model for altitude decompression sickness. Aviat Space Environ Med 1998; 69:965-970.

    PubMed  CAS  Google Scholar 

  138. Conkin J, Bedahl, SR, Van Liew HD. A computerized data-bank of decompression sickness incidence in altitude chambers. Aviat Space Environ Med 1992; 63:819-824.

    PubMed  CAS  Google Scholar 

  139. Conkin J, Powell MR, Foster PP, Waligora JM. Information about venous gas emboli improves prediction of hypobaric decompression sickness. Aviat Space Environ Med 1998; 69:8-16.

    PubMed  CAS  Google Scholar 

  140. Ryles MT, Pilmanis AA. The initial signs and symptoms of altitude decompression sickness. Aviat Space Environ Med 1996; 67:983-989.

    PubMed  CAS  Google Scholar 

  141. Kimbrell PN. Treatment of altitude decompression sickness. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression 11. Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome 245 Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:43-51.

    Google Scholar 

  142. Rudge FW. The role of ground level oxygen in the treatment of altitude chamber decompression sickness. Aviat Space Environ Med 1992; 63:1102-1105.

    PubMed  CAS  Google Scholar 

  143. Demboski JT, Pilmanis AA. Effectiveness of ground level oxygen as therapy for pain-only altitude decompression sickness. Aviat Space Environ Med 1994; 65:454.

    Google Scholar 

  144. Sukoff MH, Ragatz RE. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery 1982; 10:29-38.

    PubMed  CAS  Google Scholar 

  145. Miller JD, Ledingham IM, Jennett WB. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema. Neurosurg Psych 1970; 33:745-755.

    CAS  Google Scholar 

  146. Zamboni WA, Roth AC, Russell RC, et al. The effect of acute hyperbaric oxygen therapy on axial pattern skin flap survival when administered during and after total ischemia. J Reconstr Microsurg 1989; 5:343-347.

    PubMed  CAS  Google Scholar 

  147. Zamboni WA, Roth AC, Russell RC, Kucan J. The effect of hyperbaric oxygen treatment on the microcirculation of ischemic skeletal muscle. Undersea Biomed Res 1990; 17(Suppl.):26.

    Google Scholar 

  148. Clark JM. Oxygen toxicity. In: Bennett PB, Elliot DH (eds.), The Physiology and Medicine of Diving. London: WB Saunders; 1993:121-169.

    Google Scholar 

  149. Flynn ET, Bayne CG. Diving medical officer student guide. Course A-6A-0010. Washington, DC: U.S. Government Printing Office; 1977a:321-326.

    Google Scholar 

  150. Butler FK, Knafelc ME. Screening for oxygen intolerance in U.S. Navy divers. Undersea Biomed Res 1986; 13:91-98.

    PubMed  Google Scholar 

  151. Bean JW. Factors influencing clinical oxygen toxicity. Ann NY Acad Sci 1965; 117:745-755.

    PubMed  CAS  Google Scholar 

  152. Flynn ET, Bayne CG. Diving medical officer student guide. Course A-6A-0010. Washington: U.S. Government Printing Office; 1977b:300-311.

    Google Scholar 

  153. Butler FK, Thalmann ED. Central nervous system oxygen toxicity in closed circuit scuba divers II. Undersea Biomed Res 1986; 13:193-223.

    PubMed  Google Scholar 

  154. Hendricks PL, Hall DA, Hunter WL Jr, Haley PJ. Extension of pulmonary O2 tolerance in man at 2 ata by intermittent O2 exposure. J Appl Physiol 1977; 42:593-599.

    PubMed  CAS  Google Scholar 

  155. Harabin AL, Survanshi SS, Weathersby PK, et al. The modulation of oxygen toxicity by intermittent exposure. Toxicol Appl Pharmacol 1988; 93:298-311.

    PubMed  CAS  Google Scholar 

  156. U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washington, DC: U.S. Navy; 1993c:8-59.

    Google Scholar 

  157. Workman RD. Treatment of bends with oxygen at high pressure. Aerospace Med 1968; 39:1076-1083.

    PubMed  CAS  Google Scholar 

  158. Leitch DR, Hallenbeck JM. Oxygen in the treatment of spinal cord decompression sickness. Undersea Biomed Res 1985; 12:269-289.

    PubMed  CAS  Google Scholar 

  159. Sykes JJ, Hallenbeck JM, Leitch DR. Spinal cord decompression sickness: A comparison of recompression therapies in an animal model. Aviat Space Environ Med 1986; 57:561-568.

    PubMed  CAS  Google Scholar 

  160. U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washington, DC: U.S. Navy; 1993.

    Google Scholar 

  161. Greer HD. Neurological consequences of diving. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:223-232.

    Google Scholar 

  162. Green JW, Tichenor J, Curley MD. Treatment of type I decompression sickness using the U.S. Navy treatment algorithm. Undersea Biomed Res 1989; 16:465-470.

    PubMed  CAS  Google Scholar 

  163. Pilmanis A. Treatment of air embolism and decompression sickness. SPUMS J 1987; 17:27-32.

    Google Scholar 

  164. Van Meter K. Treatment of decompression illness (DCI) and arterial gas embolism (AGE): U.S. experience, New Orleans practice protocols for DCI and AGE. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:203-239.

    Google Scholar 

  165. Moon RE and Sheffield PJ. Consensus statement. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:417-426.

    Google Scholar 

  166. Office of Undersea Research. NOAA Diving Manual. Washington, DC: National Oceanic and Atmospheric Administration; 1991.

    Google Scholar 

  167. Drummond JC, Moore SS. The influence of dextrose adminis-tration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 1989; 70:64-70.

    PubMed  CAS  Google Scholar 

  168. Cogar WB. Intravenous lidocaine as adjunctive therapy in the treatment of decompression illness. Ann Emerg Med 1997; 29:284-286.

    PubMed  CAS  Google Scholar 

  169. Drewry A, Gorman DF. Lidocaine as an adjunct to hyperbaric therapy in decompression illness: A case report. Undersea Biomed Res 1992; 19:187-190.

    CAS  Google Scholar 

  170. Kizer KW. Corticosteroids in treatment of serious decompression sickness. Ann Emerg Med 1981; 10:485-488.

    PubMed  CAS  Google Scholar 

  171. Francis TJR, Dutka AJ, Clark JB. An evaluation of dexamethasone in the treatment of acute experimental spinal decompression sickness. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:999-1013.

    Google Scholar 

  172. Lynch PR, Krasner LJ, Vinciquerra T, Shaffer TH. Effects of intravenous perfluorocarbon and oxygen breathing on acute decompression sickness in the hamster. Undersea Biomed Res 1989; 16:275-282.

    PubMed  CAS  Google Scholar 

  173. Catron PW, Flynn ET Jr. Adjuvant drug therapy for decompression sickness: A review. Undersea Biomed Res 1982; 9:161-174.

    CAS  Google Scholar 

  174. Philp RB, Bennett PB, Andersen JC, et al. Effects of aspirin and dipyridamole on platelet function, hematology, and blood chemistry of saturation divers. Undersea Biomed Res 1979; 6:127-146.

    PubMed  CAS  Google Scholar 

  175. Norfleet WT. Analgesic use by astronauts during the peri-EVA period. Aviat Space Environ Med 1993; 64:423.

    Google Scholar 

  176. Powell MR, Norfleet WT, Kumar KV, Butler BD. Patent foramen ovale and hypobaric decompression. Aviat Space Environ Med 1995; 66:273-275.

    PubMed  CAS  Google Scholar 

  177. Rudge FW, Shafer MR. The effect of delay on treatment outcome in altitude-induced decompression sickness. Aviat Space Environ Med. 1991; 62:687-690.

    PubMed  CAS  Google Scholar 

  178. National Aeronautics and Space Administration. SSP flight data file. Houston, TX: NASA-Johnson Space Center; 1997:2-13. JSC-48092.

    Google Scholar 

  179. National Aeronautics and Space Administration. Decompression Sickness Procedures and Guidelines. Houston, TX: NASA-Johnson Space Center; 1998. JPG-1800.3.

    Google Scholar 

  180. Moon RE, Gorman DF. Treatment of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders; 1993:506-541.

    Google Scholar 

  181. Francis TJR, Gorman DF. Pathogenesis of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders, 1993; 454-480.

    Google Scholar 

  182. Dreyfuss D, Saumon G. Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 1992; 18:139-141.

    PubMed  CAS  Google Scholar 

  183. Kalfon P, Rao GSU, Gallart L, et al. Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 1997; 87:6-17.

    PubMed  CAS  Google Scholar 

  184. Verbrugge SJC, de Anda GV, Gommers D, et al. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury. Anesthesiology 1998; 89:467-474.

    PubMed  CAS  Google Scholar 

  185. Schaeffer KE, McNulty WP, Carey C, Liebow AA. Mechanisms in development of interstitial emphysema and air embolism on decompression from depth. J Appl Physiol 1958; 13:15-29.

    Google Scholar 

  186. Gorman DF, Browning DM. Cerebral vasoreactivity and arterial gas embolism. Undersea Biomed Res 1986; 13:317-335.

    PubMed  CAS  Google Scholar 

  187. Gorman DF, Browning DM, Parsons DW. Redistribution of cerebral arterial gas emboli: A comparison of treatment regimens. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:1031-1050.

    Google Scholar 

  188. Hills BA, James PB. Microbubble damage to the blood-brain barrier: Relevance to decompression sickness. Undersea Biomed Res 1991; 18:111-116.

    CAS  Google Scholar 

  189. Broome JR, Smith DJ. Pneumothorax as a complication of recompression therapy for cerebral arterial gas embolism. Undersea Biomed Res 1992; 19:447-455.

    PubMed  CAS  Google Scholar 

  190. Stonier JC. A study in prechamber treatment of cerebral air embolism patients by a first provider at Santa Catalina Island. Undersea Biomed Res 1985; 12(Suppl.):58.

    Google Scholar 

  191. Brooks GJ, Green RD, Leitch DR. Pulmonary barotrauma in submarine escape trainees and the treatment of cerebral arterial air embolism. Aviat Space Environ Med 1986; 57:1201-1207.

    PubMed  CAS  Google Scholar 

  192. Gorman DF, Pearce A, Webb RK. Dysbaric illness treated at the Royal Adelaide Hospital 1987: A factorial analysis. SPUMS J 1988; 18:95-101.

    Google Scholar 

  193. Leitch DR, Green RD. Pulmonary barotrauma in divers and the treatment of cerebral arterial gas embolism. Aviat Space Environ Med 1986; 57:931.

    PubMed  CAS  Google Scholar 

  194. Butler BD, Laine GA, Lieman BC, et al. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs. Ann Thorac Surg 1988; 45:198-202.

    Article  PubMed  CAS  Google Scholar 

  195. Dutka AJ. Therapy for dysbaric central nervous system ischaemia: Adjuncts to recompression. In: Bennett PB, Moon RE (eds.), Diving Accident Management. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1990:222-234.

    Google Scholar 

  196. Leitch DR, Greenbaum LJ, Hallenbeck JM. Cerebral air embolism I-IV. Undersea Biomed Res 1984; 11:221-274.

    PubMed  CAS  Google Scholar 

  197. Ward JE. The true nature of the boiling of body fluids in space. J Aviat Med 1956; 27:429-439.

    PubMed  CAS  Google Scholar 

  198. Kemph JP, Burch BH, Beman FM, Hitchcock FA. Further observations on dogs explosively decompressed to an ambient pressure of 30 mmHg. J Aviat Med 1954; 25:107-112.

    Google Scholar 

  199. Hitchcock FA, Kemph JP. The boiling of body liquids at extremely high altitudes. J Aviat Med 1955; 26:289-297.

    PubMed  CAS  Google Scholar 

  200. Busby DE. Space Clinical Medicine. A Prospective Look at Medical Problems from Hazards of Space Operations. Dordrecht: Reidel; 1968; 20-30, 31-37.

    Google Scholar 

  201. Roth EM. Compendium of Human Responses to the Aerospace Environment. Section 12. Washington, DC: National Aeronautics and Space Administration; 1968. NASA CR-1205(III).

    Google Scholar 

  202. Bancroft RW, Cooke JP, Cain SM. Comparison of anoxia with and without ebullism. J Appl Physiol 1968; 25:230-237.

    PubMed  CAS  Google Scholar 

  203. Koestler AG, Reynolds HH. Rapid decompression of chimpanzees to a near vacuum. J Appl Physiol 1968; 25:153-158.

    PubMed  CAS  Google Scholar 

  204. Kolesari GL, Kindwall EP. Survival following accidental decompression to an altitude greater than 74,000 feet (22,555 m). Aviat Space Environ Med 1982; 53:1211-1214.

    PubMed  CAS  Google Scholar 

  205. Air Land and Sea Application Center. Multiservice Tactics, Techniques, and Procedures for Risk Management. Langley Air Force Base, VA: Air Land Sea Application Center; 2001. AFTTP(I) 3-2.34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Norfleet, W.T. (2008). Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics