Skip to main content

Aging as a Process of Complexity Loss

  • Chapter
Complex Systems Science in Biomedicine

Abstract

Healthy physiologic function requires the integration of complex networks of control systems and feedback loops that operate on multiple scales in space and time. When measured continuously, the output of physiologic systems is highly complex, resulting in dynamic behavior that can be described using techniques derived from fractal analysis. These fractal-like physiologic processes enable an organism to adapt to the exigencies of everyday life. During normal human aging the degeneration of various tissues and organs, and the interruption of communication pathways between them, results in a loss of complexity of physiologic systems and, consequently, a reduced capacity to adapt to stress. Therefore, relatively minor perturbations such as new medications, a viral illness, or emotional trauma may result in serious disability and death. Fortunately, a number of novel interventions may be able to restore healthy dynamics in elderly individuals and enhance their ability to adapt to a variety of external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Shock NW, Greulich RC, Andres R, Arenberg D, Costa PT, Lakatta EG, Tobin JD, eds. 1984. Normal human aging: the Baltimore longitudinal study of aging. US Department of Health and Human Services, Baltimore.

    Google Scholar 

  2. Lipsitz LA. 2002. The dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol Biol Sci 57A:B115–B125.

    Google Scholar 

  3. Guyton AC. 1991. Textbook of medical physiology. Saunders, Philadelphia.

    Google Scholar 

  4. Yates FE. 1993. Self-organizing systems. In The logic of life: the challenge of integrative physiology, pp. 189–218. Ed. CAR Boyd, R Noble. Oxford UP, New York.

    Google Scholar 

  5. Lipsitz LA, Goldberger AL. 1992. Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809.

    Article  PubMed  CAS  Google Scholar 

  6. Mandelbrot BB. 1983. the fractal geometry of nature. Freeman, New York.

    Google Scholar 

  7. McNamee JE. 1991. Fractal perspectives in pulmonary physiology. J Appl Physiol 71:1–8.

    PubMed  CAS  Google Scholar 

  8. Goldberger AL, Rigney DR, West BJ. 1990. Chaos and fractals in human physiology. Sci Am 262:43–49.

    Article  Google Scholar 

  9. Goldberger AL. 1996. Non-linear dynamics for clinicians: chaos therory, fractals, and complexity at the bedside. Lancet 347:1312–1314.

    Article  PubMed  CAS  Google Scholar 

  10. Peng C-K, Havlin S, Stanley HE, Goldberger AL. q1995. uantification of scaling exponents and crossover phenomena in nonstationary heart-beat time series. Chaos 5:82–87.

    Article  PubMed  CAS  Google Scholar 

  11. Pincus SM, Goldberger AL. 1994. Physiological time-series analysis: what does regularity quantify? Am J Physiol 266:H1643–H1656.

    PubMed  CAS  Google Scholar 

  12. Costa M, Goldberger AL, Peng C-K. 2002. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102.

    Article  PubMed  CAS  Google Scholar 

  13. Kaplan DT Furman, MI Pincus, SM, Ryan SM, Lipsitz LA. 1991. Aging and complexity of cardiovascular dynamics. Biophys J 59:945–949.

    Article  PubMed  CAS  Google Scholar 

  14. Peng C-K, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, Goldberger AL, Lipsitz LA. 2002. Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng 30:683–692.

    Article  PubMed  CAS  Google Scholar 

  15. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, Goldberger AL. 1997. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82:262–269.

    PubMed  CAS  Google Scholar 

  16. Lauk M, Chow CC, Pavlik AE, Collins JJ. 1998. Human balance out equilibrium: nonequilibrium statistical mechanics in posture control. Phys Rev Lett 80:413–416.

    Article  CAS  Google Scholar 

  17. Lipsitz LA, Morin RJ, Gagnon M, Kiely DK, Medina A. 1997. Vasomotor instability preceding tilt-induced syncope: does respiration play a role? J Appl Physiol 83:383–390.

    PubMed  CAS  Google Scholar 

  18. Schuit AJ, van Amelsvoort LG, Verheij TC, Rijneke RD, Maan AC, Swenne CA, Schouten EG. 1999. Exercise training and heart rate variability in older people. Med Sci Sport Exer 31:816–821.

    Article  CAS  Google Scholar 

  19. Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, Koch ML, Trainor K, Horwitz RI. 1994. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. New Engl J Med 331:821–827.

    Article  PubMed  CAS  Google Scholar 

  20. Inouye SK, Bogardus Jr ST, Charpentier PA, Leo-Summers L, Acampora D, Holford TR, Cooney Jr LM. 1999. A multicomponent intervention to prevent delirium in hospitalized older patients. New Engl J Med 340:669–676.

    Article  PubMed  CAS  Google Scholar 

  21. Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ. 2001. Noiseenhanced vibrotactile sensitivity in older adults, patients with stroke: and patients with diabetic neuropathy. Arch Phys Med Rehab 83, 171–176.

    Article  Google Scholar 

  22. Sturis J, Scheen AJ, Leproult R, Plonsky KS, Van Cauter E. 1995. 24-hour glucose profiles during continuous or oscillatory insulin infusion: demonstration of the functional significance of ultradian insulin oscillations. J Clin Invest 95:1464–1471.

    Article  PubMed  CAS  Google Scholar 

  23. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. 2001. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women in osteoporosis. New Engl J Med 344:1434–1441.

    Article  PubMed  CAS  Google Scholar 

  24. Christini DJ, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ. 2001. Nonlinear-dynamical arrhythmia control in humans. Proc Natl Acad Sci USA 98:5827–5832.

    Article  PubMed  CAS  Google Scholar 

  25. Jelles B, van Birgelen JH, Slaets JP, Hekster RE, Jonkman EJ, Stam CJ. 1999. Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin Neurophysiol 110:1159–1167.

    Article  PubMed  CAS  Google Scholar 

  26. Mishima M, Hirai T, Itoh H, Nakano Y, Sakai H, Muro S, Nishimura K, Oku Y, Chin K, Ohi M, Nakamura T, Bates JH, Alencar AM, Suki B. 1999. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 96:8829–8834.

    Article  PubMed  CAS  Google Scholar 

  27. Makikallio TH, Koistinen J, Jordaens L, Tulppo MP, Wood N, Golosarsky B, Peng CK, Goldberger AL, Huikuri HV. 1999. Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts. Am J Cardiol 83:880–884.

    Article  PubMed  CAS  Google Scholar 

  28. Vikman S, Makikallio TH, Yli-Mayry S, Pikkujamsa S, Koivisto AM, Reinikainen P, Airaksinen KE, Huikuri HV. 1999. Altered complexity and correlation properties of R-R interval dynamic before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100:2079–2084.

    PubMed  CAS  Google Scholar 

  29. Huikuri HV, Makikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M. 2000. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101:47–53.

    PubMed  CAS  Google Scholar 

  30. Velanovich V. 1996. Fractal analysis of mammographic lesions: a feasibility study quantifying the difference between benign and malignant masses. Am J Med Sci 311:211–214.

    Article  PubMed  CAS  Google Scholar 

  31. Ho KKL, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, Goldberger AL. 1997. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848.

    PubMed  CAS  Google Scholar 

  32. Huikuri HV, Makikallio TH, Airaksinen KE, Seppanen T, Puukka P, Raiha IJ, Sourander LB. 1998. Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation 97:2031–2036.

    PubMed  CAS  Google Scholar 

  33. Makikallio TH, Huikuri HV, Hintze U, Videbaek J, Mitrani RD, Castellanos A, Myerburg RJ, Moller M. 2001. Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87:178–182.

    Article  PubMed  CAS  Google Scholar 

  34. Colantonio A, Kasl SV, Ostfeld AM, Berkman LF. 1993. Psychosocial predictors of stroke outcomes in an elderly population. J Gerontol 49:S261–S268.

    Google Scholar 

  35. Fratiglioni L, Wang H-X, Ericsson K, Maytan M, Winblad B. 2000. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet 355:1315–1319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Lipsitz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Lipsitz, L.A. (2006). Aging as a Process of Complexity Loss. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_28

Download citation

Publish with us

Policies and ethics