Skip to main content

Immunization Strategies Against Henipaviruses

  • Chapter
  • First Online:
Book cover Henipavirus

Abstract

Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold P (2012) FDA experience with medical countermeasures under the animal rule. Adv Prev Med 2012:507–571

    Google Scholar 

  • Anonymous (2008) Hendra virus, human, equine—Australia (04), Queensland. Pro-MED-mail, International Society for Infectious Diseases, 25 July, archive no. 20080725.2260. Available at www.promedmail.org

  • Anonymous (2009) Human, Equine—Australia (04), Queensland Fatal. Pro-MED-mail, International Society for Infectious Diseases, 3 Sep, archive no. 20090903.3098. Available at www.promedmail.org

  • Anonymous (2011) Hendra Virus, Equine—Australia (28), Queensland, New South Wales. Pro-MED-mail International Society for Infectious Diseases, 12 Oct, archive no. 20111013.3061. Available at www.promedmail.org

  • Anonymous (2012a) Hendra virus, equine—Australia, Queensland. Pro-MED-mail International Society for Infectious Diseases, 6 Jan, archive no. 20120106.1001359. Available at www.promedmail.org

  • Anonymous (2012b) Nipah encephalitis, human—Bangladesh, Jipurhat. Pro-MED-mail, International Society for Infectious Diseases, 7 Feb, archive no. 20120212.1040138. Available at www.promedmail.org

  • Balzer M (2011) Hendra vaccine success announced. Aust Vet J 89(7):N2–N3

    Article  PubMed  Google Scholar 

  • Bishop KA, Broder CC (2008) Hendra and Nipah: lethal zoonotic paramyxoviruses. In: Scheld WM, Hammer SM, Hughes JM (eds) Emerging infections. American Society for Microbiology, Washington, pp 155–187

    Google Scholar 

  • Bishop KA, Stantchev TS, Hickey AC, Khetawat D, Bossart KN, Krasnoperov V, Gill P, Feng YR, Wang L, Eaton BT, Wang LF, Broder CC (2007) Identification of hendra virus G glycoprotein residues that are critical for receptor binding. J Virol 81(11):5893–5901

    Article  CAS  PubMed  Google Scholar 

  • Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC (2005) Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102(30):10652–10657

    Article  CAS  PubMed  Google Scholar 

  • Bossart KN, Crameri G, Dimitrov AS, Mungall BA, Feng YR, Patch JR, Choudhary A, Wang LF, Eaton BT, Broder CC (2005) Receptor binding, fusion inhibition and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of hendra virus. J Virol 79(11):6690–6702

    Article  CAS  PubMed  Google Scholar 

  • Bossart KN, McEachern JA, Hickey AC, Choudhry V, Dimitrov DS, Eaton BT, Wang LF (2007) Neutralization assays for differential henipavirus serology using bio-plex protein array systems. J Virol Methods 142(1–2):29–40

    Article  CAS  PubMed  Google Scholar 

  • Bossart KN, Tachedjian M, McEachern JA, Crameri G, Zhu Z, Dimitrov DS, Broder CC, Wang LF (2008) Functional studies of host-specific ephrin-B ligands as henipavirus receptors. Virology 372(2):357–371

    Article  CAS  PubMed  Google Scholar 

  • Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC (2009) A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 5(10):e1000642

    Article  PubMed  Google Scholar 

  • Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, Yan L, Feng YR, Brining D, Scott D, Wang Y, Dimitrov AS, Callison J, Chan YP, Hickey AC, Dimitrov DS, Broder CC, and Rockx B (2011) A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med 3(105):103–105

    Google Scholar 

  • Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI (2008) Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15(6):567–572

    Article  CAS  PubMed  Google Scholar 

  • Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI (2010) Dimeric architecture of the hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol 84(12):6208–6217

    Article  CAS  PubMed  Google Scholar 

  • Broder CC, Earl PL, Long D, Abedon ST, Moss B, Doms RW (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and sensitive monoclonal antibodies. Proc Natl Acad Sci U S A 91(24):11699–11703

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A, Dadachova E, Pirofski LA (2004) Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2(9):695–703

    Article  CAS  PubMed  Google Scholar 

  • Chong HT, Tan CT (2003) Relapsed and late-onset Nipah encephalitis, a report of three cases. Neurol J Southeast Asia 8:109–112

    Google Scholar 

  • Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354(9186):1257–1259

    Article  CAS  PubMed  Google Scholar 

  • Chua KB, Lek Koh C, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK (2002) Isolation of Nipah virus from Malaysian island flying-foxes. Microbes Infect 4(2):145–151

    Article  PubMed  Google Scholar 

  • Colgrave ML, Snelling HJ, Shiell BR, Feng YR, Chan YP, Bossart KN, Xu K, Nikolov DB, Broder CC, Michalski WP (2012) Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of hendra virus. Glycobiology 22(4):572–584

    Article  CAS  PubMed  Google Scholar 

  • Crawford LM (2002) New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. Office of the Federal Register, National Archives and Records Administration (NARA), Washington, pp 37988–37998

    Google Scholar 

  • Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Muller MA, Kalko EK, Adu-Sarkodie Y, Oppong S, Drosten C (2009) Henipavirus RNA in African bats. PLoS One 4(7):e6367

    Article  PubMed  Google Scholar 

  • Dutch RE (2010) Entry and fusion of emerging paramyxoviruses. PLoS Pathog 6(6):e1000881

    Article  PubMed  Google Scholar 

  • Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Eaton BT, Mackenzie JS, Wang L-F (2007) Henipaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1587–1600

    Google Scholar 

  • Field HE, Mackenzie JS, Daszak P (2007) Henipaviruses: emerging paramyxoviruses associated with fruit bats. Curr Top Microbiol Immunol 315:133–159

    Article  CAS  PubMed  Google Scholar 

  • Field H, Schaaf K, Kung N, Simon C, Waltisbuhl D, Hobert H, Moore F, Middleton D, Crook A, Smith G, Daniels P, Glanville R, Lovell D (2010) Hendra virus outbreak with novel clinical features Australia. Emerg Infect Dis 16(2):338–340

    Article  PubMed  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN, Broder CC (2010) Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 5(5):e10690

    Article  PubMed  Google Scholar 

  • Griffin DE (1995) Immune responses during measles virus infection. Curr Top Microbiol Immunol 191:117–134

    Article  CAS  PubMed  Google Scholar 

  • Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF (2004) Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 78(2):834–840

    Article  CAS  PubMed  Google Scholar 

  • Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, Deubel V, Buckland R, Wild TF (2006) Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 80(4):1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L, Buckland R, Wild TF, Horvat B (2009) Acute hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387(2):459–465

    Article  CAS  PubMed  Google Scholar 

  • Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Luby SP, Woodward JL, Breiman RF (2007) Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 13(7):1031–1037

    Article  PubMed  Google Scholar 

  • Halpin K, Young PL, Field HE, Mackenzie JS (2000) Isolation of hendra virus from pteropid bats: a natural reservoir of hendra virus. J Gen Virol 81(Pt 8):1927–1932

    CAS  PubMed  Google Scholar 

  • Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, Rollin PE, Comer JA, Ksiazek TG, Hossain MJ, Gurley ES, Breiman RF, Bellini WJ, Rota PA (2005) Genetic characterization of Nipah virus, Bangladesh 2004. Emerg Infect Dis 11(10):1594–1597

    Article  CAS  PubMed  Google Scholar 

  • Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA (2008) Evidence of henipavirus infection in west african fruit bats. PLoS ONE 3(7):e2739

    Article  PubMed  Google Scholar 

  • Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, Cunningham AA, Wood JL (2011) Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS One 6(9):e25256

    Article  CAS  PubMed  Google Scholar 

  • Hickey AC, Bossart KN, Rockx B, Feldmann F, Geisbert JB, Yan L, Feng YR, Feldmann H, Geisbert TW, Broder CC (2011) Vaccination of nonhuman primates with a recombinant soluble henipavirus attachment G glycoprotein protects against lethal Nipah virus challenge. Am Soc Virol 40–2:195

    Google Scholar 

  • Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R, Khan MS, Podder G, Nahar K, Ahmed B, Gurley ES, Daszak P, Lipkin WI, Rollin PE, Comer JA, Ksiazek TG, Luby SP (2010) Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 138(11):1630–1636

    Article  CAS  PubMed  Google Scholar 

  • Hooper PT, Ketterer PJ, Hyatt AD, Russell GM (1997a) Lesions of experimental equine morbillivirus pneumonia in horses. Vet Pathol 34(4):312–322

    Article  CAS  PubMed  Google Scholar 

  • Hooper PT, Westbury HA, Russell GM (1997b) The lesions of experimental equine morbillivirus disease in cats and guinea pigs. Vet Pathol 34(4):323–329

    Article  CAS  PubMed  Google Scholar 

  • Hooper P, Zaki S, Daniels P, Middleton D (2001) Comparative pathology of the diseases caused by hendra and Nipah viruses. Microbes Infect 3(4):315–322

    Article  CAS  PubMed  Google Scholar 

  • Iehle C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges-Courbot MC, Rousset D, Reynes JM (2007) Henipavirus and tioman virus antibodies in pteropodid bats. Madagascar. Emerg Infect Dis 13(1):159–161

    Article  Google Scholar 

  • Kang AS, Jones TM, Burton DR (1991) Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc Natl Acad Sci U S A 88(24):11120–11123

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 1(15): re2

    Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1449–1496

    Google Scholar 

  • Lamb RA, Collins PL, Kolakofsky D, Melero JA, Nagai Y, Oldstone MBA, Pringle CR, Rima BK (2005) Family Paramyxoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: the classification and nomenclature of viruses. The eighth report of the international committee in taxonomy of viruses. Elsevier Academic Press, San Diego, pp 655–668

    Google Scholar 

  • Lee B, Ataman ZA (2011) Modes of paramyxovirus fusion: a henipavirus perspective. Trends Microbiol 19(8):389–399

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Hickey AC, Zhang Y, Wu Y, Zhang H, Yuan J, Han Z, McEachern J, Broder CC, Wang LF, Shi Z (2008) Antibodies to Nipah or Nipah-like viruses in bats. China. Emerg Infect Dis 14(12):1974–1976

    Article  Google Scholar 

  • Li M, Embury-Hyatt C, Weingartl HM (2010) Experimental inoculation study indicates swine as a potential host for hendra virus. Vet Res 41(3):33

    Article  PubMed  Google Scholar 

  • Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M (2009) Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 15(8):1229–1235

    Article  PubMed  Google Scholar 

  • Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY, Murri S, Loth P, Tordo N, Wild F, Horvat B, Contamin H (2010) Experimental infection of squirrel monkeys with Nipah virus. Emerg Infect Dis 16(3):507–510

    Article  PubMed  Google Scholar 

  • Marsh GA, Haining J, Hancock TJ, Robinson R, Foord A, Barr JA, Riddell S, Heine H, White JR, Crameri G, Field HE, Middleton D, Wang LF (2011) Experimental infection of horses with hendra virus/Australia/Horse/2008/Redlands; implications for control of transmission to people and horses. Emerg Infect Dis 17(12):2232–2238

    Article  PubMed  Google Scholar 

  • McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN (2008) A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 26(31):3842–3852

    Article  CAS  PubMed  Google Scholar 

  • Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD (2002) Experimental Nipah virus infection in pigs and cats. J Comp Pathol 126(2–3):124–136

    Article  CAS  PubMed  Google Scholar 

  • Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW (2007) Experimental Nipah Virus Infection in Pteropid Bats (Pteropus poliocephalus). J Comp Pathol 136(4):266–272

    Article  CAS  PubMed  Google Scholar 

  • Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K, Russell G, Green D, McEachern J, Pritchard LI, Eaton BT, Wang LF, Bossart KN, Broder CC (2006) Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80(24):12293–12302

    Article  CAS  PubMed  Google Scholar 

  • Mungall BA, Middleton D, Crameri G, Halpin K, Bingham J, Eaton BT, Broder CC (2007) Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J Infect Dis 196(6):812–816

    Article  CAS  PubMed  Google Scholar 

  • Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B et al (1995) A morbillivirus that caused fatal disease in horses and humans. Science 268(5207):94–97

    Article  CAS  PubMed  Google Scholar 

  • Murray K, Eaton B, Hooper P, Wang L, Williamson M, Young P (1998) Flying foxes, horses, and humans: a zoonosis caused be a new member of the Paramyxoviridae. In: Scheld WM, Armstrong D, Hughes JM (eds) Emerging infections. ASM Press, Washington, pp 43–58

    Google Scholar 

  • Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436(7049):401–405

    CAS  PubMed  Google Scholar 

  • Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Muhlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B (2006) Two key residues in Ephrinb3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2(2):e7

    Article  PubMed  Google Scholar 

  • O’Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R, Gleeson LJ, Gould AR, Hyatt AD, Bradfield J (1997) Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349(9045):93–95

    Article  PubMed  Google Scholar 

  • Pallister J, Middleton D, Crameri G, Yamada M, Klein R, Hancock TJ, Foord A, Shiell B, Michalski W, Broder CC, Wang LF (2009) Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol 83(22):11979–11982

    Article  CAS  PubMed  Google Scholar 

  • Pallister J, Middleton D, Broder CC, Wang LF (2011a) Henipavirus vaccine development. J Bioterr Biodef S1:005. doi:10.4172/2157-2526.S1-005

  • Pallister J, Middleton D, Wang LF, Klein R, Haining J, Robinson R, Yamada M, White J, Payne J, Feng YR, Chan YP, Broder CC (2011b) A recombinant hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal hendra virus challenge. Vaccine 29(34):5623–5630

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10(8):806–810

    Article  CAS  PubMed  Google Scholar 

  • Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52

    Article  CAS  PubMed  Google Scholar 

  • Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180

    Article  CAS  PubMed  Google Scholar 

  • Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, Moore F, Taylor C, Kung YH, Field H (2010) Human hendra virus encephalitis associated with equine outbreak, Australia 2008. Emerg Infect Dis 16(2):219–223

    Article  PubMed  Google Scholar 

  • Rader C, Barbas CF 3rd (1997) Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8(4):503–508

    Article  CAS  PubMed  Google Scholar 

  • Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC, Brining D, Callison J, Safronetz D, Marzi A, Kercher L, Long D, Broder CC, Feldmann H, Geisbert TW (2010) A novel model of lethal hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 84(19):9831–9839

    Article  CAS  PubMed  Google Scholar 

  • Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H (2011) Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 85(15):7658–7671

    Article  CAS  PubMed  Google Scholar 

  • Rogers RJ, Douglas IC, Baldock FC, Glanville RJ, Seppanen KT, Gleeson LJ, Selleck PN, Dunn KJ (1996) Investigation of a second focus of equine morbillivirus infection in coastal Queensland. Aust Vet J 74(3):243–244

    Article  CAS  PubMed  Google Scholar 

  • Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, Lavercombe PS, Selleck P, Sheridan JW (1995) Infection of humans and horses by a newly described morbillivirus. Med J Aust 162(12):642–645

    CAS  PubMed  Google Scholar 

  • Sendow I, Field HE, Curran J, Darminto, Morrissy C, Meehan G, Buick T, Daniels P (2006) Henipavirus in Pteropus vampyrus bats Indonesia. Emerg Infect Dis 12(4):711–712

    Article  PubMed  Google Scholar 

  • Sendow I, Field HE, Curran J, Darminto, Morrissy C, Daniels P (2010) Screening for Nipah virus infection in west kalimantan province Indonesia. Zoonoses Public Health 57(7–8):499–503

    Article  CAS  PubMed  Google Scholar 

  • Smith I, Broos A, de Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh G, Tachedjian M, Yu M, Kung YH, Wang LF, Field H (2011) Identifying hendra virus diversity in pteropid bats. PLoS One 6(9):e25275

    Article  CAS  PubMed  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101(16):6062–6067

    Article  CAS  PubMed  Google Scholar 

  • Tan CT, Wong KT (2003) Nipah encephalitis outbreak in Malaysia. Ann Acad Med Singapore 32(1):112–117

    CAS  PubMed  Google Scholar 

  • Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, Murugasu P, Loh YL, Chong HT, Tan KS, Thayaparan T, Kumar S, Jusoh MR (2002) Relapsed and late-onset Nipah encephalitis. Ann Neurol 51(6):703–708

    Article  PubMed  Google Scholar 

  • Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, Stockton P, Rupprecht CE, Ksiazek TG, Hemachudha T (2005) Bat Nipah virus Thailand. Emerg Infect Dis 11(12):1949–1951

    Article  PubMed  Google Scholar 

  • Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M (2005) Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 79(12):7528–7534

    Article  CAS  PubMed  Google Scholar 

  • Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M (2006) Recombinant Nipah virus vaccines protect pigs against challenge. J Virol 80(16):7929–7938

    Article  CAS  PubMed  Google Scholar 

  • Weingartl HM, Berhane Y, Czub M (2009) Animal models of henipavirus infection: a review. Vet J 181(3):211–220

    Article  PubMed  Google Scholar 

  • Westbury HA, Hooper PT, Selleck PW, Murray PK (1995) Equine morbillivirus pneumonia: susceptibility of laboratory animals to the virus. Aust Vet J 72(7):278–279

    Article  CAS  PubMed  Google Scholar 

  • Westbury HA, Hooper PT, Brouwer SL, Selleck PW (1996) Susceptibility of cats to equine morbillivirus. Aust Vet J 74(2):132–134

    Article  CAS  PubMed  Google Scholar 

  • White JR, Boyd V, Crameri GS, Duch CJ, van Laar RK, Wang LF, Eaton BT (2005) Location of, immunogenicity of and relationships between neutralization epitopes on the attachment protein (G) of hendra virus. J Gen Virol 86(Pt 10):2839–2848

    Article  CAS  PubMed  Google Scholar 

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56:365–394

    Article  CAS  PubMed  Google Scholar 

  • Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, Westbury HA, Murray PK (1998) Transmission studies of hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76(12):813–818

    Article  CAS  PubMed  Google Scholar 

  • Wong KT (2010) Emerging epidemic viral encephalitides with a special focus on henipaviruses. Acta Neuropathol 120(3):317–325

    Article  PubMed  Google Scholar 

  • Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR (2002) Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 161(6):2153–2167

    Article  PubMed  Google Scholar 

  • Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163(5):2127–2137

    Article  PubMed  Google Scholar 

  • Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, Ansford AJ, Tannenberg A (2009) Human hendra virus infection causes acute and relapsing encephalitis. Neuropathol Appl Neurobiol 35(3):296–305

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Shin SU, Morrison SL (1992) Genetically engineered antibodies: progress and prospects. Crit Rev Immunol 12(3–4):125–168

    CAS  PubMed  Google Scholar 

  • Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB (2008) Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A 105(29):9953–9958

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Khetawat D, Rajashankar KR, Chan YP, Kolev MV, Broder CC, Nikolov DB (2012) Crystal structures of the hendra virus G glycoprotein and its complex with ephrin-B2 reveal new insights into the virus attachment and entry process submitted (in press)

    Google Scholar 

  • Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T (2001) Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7(3):439–441

    CAS  PubMed  Google Scholar 

  • Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS (2011) Structure of the newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A 108(36):14920–14925

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, Choudhry V, Mungall BA, Feng YR, Choudhary A, Zhang MY, Feng Y, Wang LF, Xiao X, Eaton BT, Broder CC, Dimitrov DS (2006) Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol 80(2):891–899

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Bossart KN, Bishop KA, Crameri G, Dimitrov AS, McEachern JA, Feng Y, Middleton D, Wang LF, Broder CC, Dimitrov DS (2008) Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis 197(6):846–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The views expressed in the manuscript are solely those of the authors, and they do not represent official views or opinions of the Department of Defense or The Uniformed Services University of the Health Science. Supported in part by the Department of Health and Human Services, National Institutes of Health, grants AI054715, AI077995, AI082121.

Conflict of Interest

C.C.B is a United States federal employee; C.C.B is coinventor on patents relating to human monoclonal antibodies against Hendra and Nipah viruses and C.C.B and K.N.B are coinventors on patents relating to soluble forms of Hendra and Nipah envelope glycoproteins and vaccines; assignees are The United States of America as represented by the Department of Health and Human Services (Washington, DC), and the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (Bethesda, MD). All other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Broder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broder, C.C. et al. (2012). Immunization Strategies Against Henipaviruses. In: Lee, B., Rota, P. (eds) Henipavirus. Current Topics in Microbiology and Immunology, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_213

Download citation

Publish with us

Policies and ethics