Skip to main content

Chemical Activation of Sensory TRP Channels

  • Chapter
  • First Online:
Taste and Smell

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 23))

Abstract

The overall perception of flavor results from the integration of taste, smell, and somatosensory information streaming out of specialized receptor cells located in the oronasal cavities. Several members of the transient receptor potential family of cation channels contribute to the signal transduction of chemical stimuli. All bona fide TRP channel chemosensors contribute to flavor detection by acting on epithelial cells and/or sensory nerve endings in the mucosa of the nose, mouth, and throat. Chemical activation of these channels results in a very obvious, but yet obscure, sensory modality called trigeminality or chemesthesis, which is related to the perception of texture, temperature, and pungency. These sensations arise when chemical compounds activate receptor cells associated with other senses that mediate touch, thermal perception, and pain. In this chapter we illustrate the huge diversity of chemical agonists of TRP channels and underscore the need of more basic research on this amazing family of molecular sensors, which are very likely to hold the key for better understanding of human sensory pathophysiology.

Brett Boonen and Justyna B. Startek are equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilius B, Appendino G (2013) Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 164:1–76

    CAS  Google Scholar 

  2. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  Google Scholar 

  3. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

    Article  CAS  Google Scholar 

  4. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38(3–4):233–252

    Article  CAS  Google Scholar 

  5. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  CAS  Google Scholar 

  6. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103(51):19564–19568

    Article  CAS  Google Scholar 

  7. Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6(1):79–96

    Article  CAS  Google Scholar 

  8. Nagata K (2007) TRP channels as target sites for insecticides: physiology, pharmacology and toxicology. Invert Neurosci 7(1):31–37

    Article  CAS  Google Scholar 

  9. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265

    Article  CAS  Google Scholar 

  10. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21(4):316–321

    Article  CAS  Google Scholar 

  11. Gees M, Alpizar YA, Boonen B, Sanchez A, Everaerts W, Segal A, Xue F, Janssens A, Owsianik G, Nilius B, Voets T, Talavera K (2013) Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate. Mol Pharmacol 84(3):325–334

    Article  CAS  Google Scholar 

  12. Alpizar YA, Boonen B, Gees M, Sanchez A, Nilius B, Voets T, Talavera K (2014) Allyl isothiocyanate sensitizes TRPV1 to heat stimulation. Pflugers Arch 466(3):507–515

    Article  CAS  Google Scholar 

  13. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15(10):929–934

    Article  CAS  Google Scholar 

  14. Salazar H, Llorente I, Jara-Oseguera A, García-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T (2008) A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci 11(3):255–261

    Article  CAS  Google Scholar 

  15. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102(34):12248–12252

    Article  CAS  Google Scholar 

  16. Koizumi K, Iwasaki Y, Narukawa M, Iitsuka Y, Fukao T, Seki T, Ariga T, Watanabe T (2009) Diallyl sulfides in garlic activate both TRPA1 and TRPV1. Biochem Biophys Res Commun 382(3):545–548

    Article  CAS  Google Scholar 

  17. Feng Z, Lu Y, Wu X, Zhao P, Li J, Peng B, Qian Z, Zhu L (2012) Ligustilide alleviates brain damage and improves cognitive function in rats of chronic cerebral hypoperfusion. J Ethnopharmacol 144(2):313–321

    Article  CAS  Google Scholar 

  18. Zhong J, Pollastro F, Prenen J, Zhu Z, Appendino G, Nilius B (2011) Ligustilide: a novel TRPA1 modulator. Pflugers Arch 462(6):841–849

    Article  CAS  Google Scholar 

  19. Alpizar YA, Gees M, Sanchez A, Apetrei A, Voets T, Nilius B, Talavera K (2013) Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1. Pflugers Arch 465(6):853–864

    Article  CAS  Google Scholar 

  20. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    Article  CAS  Google Scholar 

  21. Sadofsky LR, Boa AN, Maher SA, Birrell MA, Belvisi MG, Morice AH (2011) TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids. Pharmacol Res 63(1):30–36

    Article  CAS  Google Scholar 

  22. Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, Gisselmann G, Hatt H (2007) Monoterpenoid agonists of TRPV3. Br J Pharmacol 151(4):530–540

    Article  CAS  Google Scholar 

  23. Malik Z, Baik D, Schey R (2015) The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep 17(2):429

    Article  Google Scholar 

  24. De Petrocellis L, Vellani V, Schiano-Moriello A, Marini P, Magherini PC, Orlando P, Di Marzo V (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325(3):1007–1015

    Article  CAS  Google Scholar 

  25. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238

    Article  CAS  Google Scholar 

  26. De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo AA, Di Marzo V (2012) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol (Oxf) 204(2):255–266

    Article  CAS  Google Scholar 

  27. Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688

    Article  CAS  Google Scholar 

  28. Izzo AA, Sharkey KA (2010) Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 126(1):21–38

    Article  CAS  Google Scholar 

  29. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65

    Article  CAS  Google Scholar 

  30. Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142(2):278–287

    Article  CAS  Google Scholar 

  31. Leamy AW, Shukla P, McAlexander MA, Carr MJ, Ghatta S (2011) Curcumin ((E,E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) activates and desensitizes the nociceptor ion channel TRPA1. Neurosci Lett 503(3):157–162

    Article  CAS  Google Scholar 

  32. Premkumar LS (2014) Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci 5(11):1117–1130

    Article  CAS  Google Scholar 

  33. Iwasaki Y, Tanabe M, Kayama Y, Abe M, Kashio M, Koizumi K, Okumura Y, Morimitsu Y, Tominaga M, Ozawa Y, Watanabe T (2009) Miogadial and miogatrial with alpha, beta-unsaturated 1,4-dialdehyde moieties – novel and potent TRPA1 agonists. Life Sci 85(1–2):60–69

    Article  CAS  Google Scholar 

  34. Narukawa M, Koizumi K, Iwasaki Y, Kubota K, Watanabe T (2010) Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1. Biosci Biotechnol Biochem 74(8):1694–1696

    Article  CAS  Google Scholar 

  35. Witte DG, Cassar SC, Masters JN, Esbenshade T, Hancock AA (2002) Use of a fluorescent imaging plate reader-based calcium assay to assess pharmacological differences between the human and rat vanilloid receptor. J Biomol Screen 7(5):466–475

    Article  CAS  Google Scholar 

  36. Riera CE, Menozzi-Smarrito C, Affolter M, Michlig S, Munari C, Robert F, Vogel H, Simon SA, le Coutre J (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br J Pharmacol 157(8):1398–1409

    Article  CAS  Google Scholar 

  37. Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC (2010) Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 54(11):1618–1627

    Article  CAS  Google Scholar 

  38. Escalera J, von Hehn CA, Bessac BF, Sivula M, Jordt SE (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem 283(35):24136–24144

    Article  CAS  Google Scholar 

  39. Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P (2012) The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135(Pt 2):376–390

    Article  Google Scholar 

  40. Zhong J, Minassi A, Prenen J, Taglialatela-Scafati O, Appendino G, Nilius B (2011) Umbellulone modulates TRP channels. Pflugers Arch 462(6):861–870

    Article  CAS  Google Scholar 

  41. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32(4):335–343

    Article  CAS  Google Scholar 

  42. Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25(39):8924–8937

    Article  CAS  Google Scholar 

  43. Takaishi M, Uchida K, Fujita F, Tominaga M (2014) Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci 64(1):47–57

    Article  CAS  Google Scholar 

  44. Selescu T, Ciobanu AC, Dobre C, Reid G, Babes A (2013) Camphor activates and sensitizes transient receptor potential melastatin 8 (TRPM8) to cooling and icilin. Chem Senses 38(7):563–575

    Article  CAS  Google Scholar 

  45. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    Article  CAS  Google Scholar 

  46. Bassoli A, Borgonovo G, Caimi S, Scaglioni L, Morini G, Moriello AS, Di Marzo V, De Petrocellis L (2009) Taste-guided identification of high potency TRPA1 agonists from Perilla frutescens. Bioorg Med Chem 17(4):1636–1639

    Article  CAS  Google Scholar 

  47. Bassoli A, Borgonovo G, Morini G, De Petrocellis L, Schiano Moriello A, Di Marzo V (2013) Analogues of perillaketone as highly potent agonists of TRPA1 channel. Food Chem 141(3):2044–2051

    Article  CAS  Google Scholar 

  48. Green BG (1985) Menthol modulates oral sensations of warmth and cold. Physiol Behav 35(3):427–434

    Article  CAS  Google Scholar 

  49. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci 28(39):9640–9651

    Article  CAS  Google Scholar 

  50. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27(37):9874–9884

    Article  CAS  Google Scholar 

  51. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  CAS  Google Scholar 

  52. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141(4):737–745

    Article  CAS  Google Scholar 

  53. Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9(5):628–635

    Article  CAS  Google Scholar 

  54. Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153(8):1739–1749

    Article  CAS  Google Scholar 

  55. Sugai E, Morimitsu Y, Kubota K (2005) Quantitative analysis of sanshool compounds in Japanese pepper (Xanthoxylum piperitum DC.) and their pungent characteristics. Biosci Biotechnol Biochem 69(10):1958–1962

    Article  CAS  Google Scholar 

  56. Bryant BP, Mezine I (1999) Alkylamides that produce tingling paresthesia activate tactile and thermal trigeminal neurons. Brain Res 842(2):452–460

    Article  CAS  Google Scholar 

  57. Koo JY, Jang Y, Cho H, Lee CH, Jang KH, Chang YH, Shin J, Oh U (2007) Hydroxy-alpha-sanshool activates TRPV1 and TRPA1 in sensory neurons. Eur J Neurosci 26(5):1139–1147

    Article  Google Scholar 

  58. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  Google Scholar 

  59. Watanabe M, Ueda T, Shibata Y, Kumamoto N, Ugawa S (2015) The role of TRPV1 channels in carrageenan-induced mechanical hyperalgesia in mice. Neuroreport 26(3):173–178

    Article  CAS  Google Scholar 

  60. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  CAS  Google Scholar 

  61. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75(6):1262–1279

    Article  CAS  Google Scholar 

  62. Iida T, Moriyama T, Kobata K, Morita A, Murayama N, Hashizume S, Fushiki T, Yazawa S, Watanabe T, Tominaga M (2003) TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44(7):958–967

    Article  CAS  Google Scholar 

  63. Shintaku K, Uchida K, Suzuki Y, Zhou Y, Fushiki T, Watanabe T, Yazawa S, Tominaga M (2012) Activation of transient receptor potential A1 by a non-pungent capsaicin-like compound, capsiate. Br J Pharmacol 165(5):1476–1486

    Article  CAS  Google Scholar 

  64. Yang L, Fujita T, Jiang CY, Piao LH, Yue HY, Mizuta K, Kumamoto E (2011) TRPV1 agonist piperine but not olvanil enhances glutamatergic spontaneous excitatory transmission in rat spinal substantia gelatinosa neurons. Biochem Biophys Res Commun 410(4):841–845

    Article  CAS  Google Scholar 

  65. Del Prete D, Caprioglio D, Appendino G, Minassi A, Schiano-Moriello A, Di Marzo V, De Petrocellis L (2015) Discovery of non-electrophilic capsaicinoid-type TRPA1 ligands. Bioorg Med Chem Lett 25(5):1015–1017

    Google Scholar 

  66. Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153(8):1739–1749

    Article  CAS  Google Scholar 

  67. Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R, Viana F, Nemery B, Nilius B, Voets T (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12(10):1293–1299

    Article  CAS  Google Scholar 

  68. Andrè E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118(7):2574–2582

    Google Scholar 

  69. Okumura Y, Narukawa M, Iwasaki Y, Ishikawa A, Matsuda H, Yoshikawa M, Watanabe T (2010) Activation of TRPV1 and TRPA1 by black pepper components. Biosci Biotechnol Biochem 74(5):1068–1072

    Article  CAS  Google Scholar 

  70. Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M (2002) Aroma compound analysis of piper nigrum and piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography–mass spectrometry and olfactometry. J Chromatogr A 976(1–2):265–275

    Article  CAS  Google Scholar 

  71. McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144(6):781–790

    Article  CAS  Google Scholar 

  72. Hata T, Tazawa S, Ohta S, Rhyu MR, Misaka T, Ichihara K (2012) Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels. PLoS One 7(11):e48072

    Article  CAS  Google Scholar 

  73. Peyrot des Gachons C, Uchida K, Bryant B, Shima A, Sperry JB, Dankulich-Nagrudny L, Tominaga M, Smith AB, Beauchamp GK, Breslin PA (2011) Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J Neurosci 31(3):999–1009

    Article  CAS  Google Scholar 

  74. Ohkubo T, Shibata M (1997) The selective capsaicin antagonist capsazepine abolishes the antinociceptive action of eugenol and guaiacol. J Dent Res 76(4):848–851

    Article  CAS  Google Scholar 

  75. Yang BH, Piao ZG, Kim YB, Lee CH, Lee JK, Park K, Kim JS, Oh SB (2003) Activation of vanilloid receptor 1 (VR1) by eugenol. J Dent Res 82(10):781–785

    Article  CAS  Google Scholar 

  76. Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 97(3):250–256

    Article  CAS  Google Scholar 

  77. Takaishi M, Fujita F, Uchida K, Yamamoto S, Ms C, Shimizu M, Tominaga M (2012) 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain 8:86

    Article  CAS  Google Scholar 

  78. Maggi CA, Patacchini R, Tramontana M, Amann R, Giuliani S, Santicioli P (1990) Similarities and differences in the action of resiniferatoxin and capsaicin on central and peripheral endings of primary sensory neurons. Neuroscience 37(2):531–539

    Article  CAS  Google Scholar 

  79. Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281(40):29897–29904

    Article  CAS  Google Scholar 

  80. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282(17):12796–12803

    Article  CAS  Google Scholar 

  81. Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS, Müller WE (2010) Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators – identification of a novel pharmacophore. Mol Pharmacol 77(3):368–377

    Article  CAS  Google Scholar 

  82. Roper SD (2014) TRPs in taste and chemesthesis. Handb Exp Pharmacol 223:827–871

    Article  CAS  Google Scholar 

  83. Zufall F (2014) TRPs in olfaction. Handb Exp Pharmacol 223:917–933

    Article  CAS  Google Scholar 

  84. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280(8):6423–6433

    Article  CAS  Google Scholar 

  85. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280(24):22899–22906

    Article  CAS  Google Scholar 

  86. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595–598

    Article  CAS  Google Scholar 

  87. Tóth B, Iordanov I, Csanády L (2014) Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating. Proc Natl Acad Sci U S A 111(47):16949–16954

    Article  CAS  Google Scholar 

  88. Jabba S, Goyal R, Sosa-Pagán JO, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J (2014) Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82(5):1017–1031

    Article  CAS  Google Scholar 

  89. Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45(51):15168–15178

    Article  CAS  Google Scholar 

  90. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24(8):311–316

    Article  CAS  Google Scholar 

  91. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6):1435–1448

    Article  CAS  Google Scholar 

  92. Jernigan KK, Bordenstein SR (2014) Ankyrin domains across the tree of life. PeerJ 2:e264

    Article  CAS  Google Scholar 

  93. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4(5):372–379

    Article  CAS  Google Scholar 

  94. Gaudet R (2009) Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133(3):231–237

    Article  CAS  Google Scholar 

  95. Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY (2014) Structural insight into the assembly of TRPV channels. Structure 22(2):260–268

    Article  CAS  Google Scholar 

  96. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281(35):25006–25010

    Article  CAS  Google Scholar 

  97. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  Google Scholar 

  98. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  Google Scholar 

  99. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3

    Google Scholar 

  100. Tsuruda PR, Julius D, Minor DL (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51(2):201–212

    Article  CAS  Google Scholar 

  101. Fujiwara Y, Minor DL (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383(4):854–870

    Article  CAS  Google Scholar 

  102. García-Sanz N, Fernández-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sánchez E, Fernández-Ballester G, Ferrer-Montiel A (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24(23):5307–5314

    Article  CAS  Google Scholar 

  103. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493(4):596–606

    Article  CAS  Google Scholar 

  104. Ji G, Zhou S, Carlton SM (2008) Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 154(3):1054–1066

    Article  CAS  Google Scholar 

  105. Anand U, Otto WR, Facer P, Zebda N, Selmer I, Gunthorpe MJ, Chessell IP, Sinisi M, Birch R, Anand P (2008) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438(2):221–227

    Article  CAS  Google Scholar 

  106. Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129(9):2312–2315

    Article  CAS  Google Scholar 

  107. Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S (2012) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 7(8):e42454

    Article  CAS  Google Scholar 

  108. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545

    Article  CAS  Google Scholar 

  109. Wallock-Richards D, Doherty CJ, Doherty L, Clarke DJ, Place M, Govan JR, Campopiano DJ (2014) Garlic revisited: antimicrobial activity of Allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One 9(12):e112726

    Article  CAS  Google Scholar 

  110. Meotti FC, Lemos de Andrade E, Calixto JB (2014) TRP modulation by natural compounds. Handb Exp Pharmacol 223:1177–1238

    Article  CAS  Google Scholar 

  111. Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 13:275

    Article  CAS  Google Scholar 

  112. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med 2014:642942

    Article  Google Scholar 

  113. Hirst RA, Lambert DG, Notcutt WG (1998) Pharmacology and potential therapeutic uses of cannabis. Br J Anaesth 81(1):77–84

    Article  CAS  Google Scholar 

  114. Ursu D, Knopp K, Beattie RE, Liu B, Sher E (2010) Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur J Pharmacol 641(2–3):114–122

    Article  CAS  Google Scholar 

  115. Morita A, Iwasaki Y, Kobata K, Iida T, Higashi T, Oda K, Suzuki A, Narukawa M, Sasakuma S, Yokogoshi H, Yazawa S, Tominaga M, Watanabe T (2006) Lipophilicity of capsaicinoids and capsinoids influences the multiple activation process of rat TRPV1. Life Sci 79(24):2303–2310

    Article  CAS  Google Scholar 

  116. Camazine SM, Resch JF, Eisner T, Meinwald J (1983) Mushroom chemical defense: Pungent sesquiterpenoid dialdehyde antifeedant to opossum. J Chem Ecol 9(10):1439–1447

    Article  CAS  Google Scholar 

  117. Aujard I, Röme D, Arzel E, Johansson M, de Vos D, Sterner O (2005) Tridemethylisovelleral, a potent cytotoxic agent. Bioorg Med Chem 13(22):6145–6150

    Article  CAS  Google Scholar 

  118. Jonassohn M, Anke H, Morales P, Sterner O (1995) Structure-activity relationships for unsaturated dialdehydes. 10. The generation of bioactive products by autoxidation of isovelleral and merulidial. Acta Chem Scand 49(7):530–535

    Article  CAS  Google Scholar 

  119. Feld H, Hertewich UM, Zapp J, Becker H (2005) Sacculatane diterpenoids from axenic cultures of the liverwort Fossombronia wondraczekii. Phytochemistry 66(10):1094–1099

    Article  CAS  Google Scholar 

  120. Starkenmann C, Cayeux I, Birkbeck AA (2011) Exploring natural products for new taste sensations. Chimia (Aarau) 65(6):407–410

    Article  CAS  Google Scholar 

  121. Baraldi PG, Preti D, Materazzi S, Geppetti P (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53(14):5085–5107

    Article  CAS  Google Scholar 

  122. Kasting GB, Francis WR, Bowman LA, Kinnett GO (1997) Percutaneous absorption of vanilloids: in vivo and in vitro studies. J Pharm Sci 86(1):142–146

    Article  CAS  Google Scholar 

  123. Hill K, Schaefer M (2007) TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. J Biol Chem 282(10):7145–7153

    Article  CAS  Google Scholar 

  124. Kashiwayanagi M, Suenaga A, Enomoto S, Kurihara K (1990) Membrane fluidity changes of liposomes in response to various odorants. Complexity of membrane composition and variety of adsorption sites for odorants. Biophys J 58(4):887–895

    Article  CAS  Google Scholar 

  125. Green BG (1990) Sensory characteristics of camphor. J Invest Dermatol 94(5):662–666

    Article  CAS  Google Scholar 

  126. Gavliakova S, Biringerova Z, Buday T, Brozmanova M, Calkovsky V, Poliacek I, Plevkova J (2013) Antitussive effects of nasal thymol challenges in healthy volunteers. Respir Physiol Neurobiol 187(1):104–107

    Article  CAS  Google Scholar 

  127. Mohammadi B, Haeseler G, Leuwer M, Dengler R, Krampfl K, Bufler J (2001) Structural requirements of phenol derivatives for direct activation of chloride currents via GABA(A) receptors. Eur J Pharmacol 421(2):85–91

    Article  CAS  Google Scholar 

  128. Alimohammadi H, Silver WL (2000) Evidence for nicotinic acetylcholine receptors on nasal trigeminal nerve endings of the rat. Chem Senses 25(1):61–66

    Article  CAS  Google Scholar 

  129. Hatsukami DK, Stead LF, Gupta PC (2008) Tobacco addiction. Lancet 371(9629):2027–2038

    Article  CAS  Google Scholar 

  130. Fucile S, Sucapane A, Eusebi F (2005) Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J Physiol 565(Pt 1):219–228

    Article  CAS  Google Scholar 

  131. Jacob P, Hatsukami D, Severson H, Hall S, Yu L, Benowitz NL (2002) Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiol Biomarkers Prev 11(12):1668–1673

    CAS  Google Scholar 

  132. Talhout R, Schulz T, Florek E, van Benthem J, Wester P, Opperhuizen A (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8(2):613–628

    Article  Google Scholar 

  133. Wood C, Siebert TE, Parker M, Capone DL, Elsey GM, Pollnitz AP, Eggers M, Meier M, Vössing T, Widder S, Krammer G, Sefton MA, Herderich MJ (2008) From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. J Agric Food Chem 56(10):3738–3744

    Article  CAS  Google Scholar 

  134. Jagella T, Grosch W (1999) Flavour and off-flavour compounds of black and white pepper (piper nigrum L.) III. Desirable and undesirable odorants of white pepper. Eur Food Res Technol 209(1):27–31

    Article  CAS  Google Scholar 

  135. Nakamura R, Watanabe K, Oka K, Ohta S, Mishima S, Teshima R (2010) Effects of propolis from different areas on mast cell degranulation and identification of the effective components in propolis. Int Immunopharmacol 10(9):1107–1112

    Article  CAS  Google Scholar 

  136. Inui S, Hatano A, Yoshino M, Hosoya T, Shimamura Y, Masuda S, Ahn MR, Tazawa S, Araki Y, Kumazawa S (2014) Identification of the phenolic compounds contributing to antibacterial activity in ethanol extracts of Brazilian red propolis. Nat Prod Res 28(16):1293–1296

    Article  CAS  Google Scholar 

  137. Hattori H, Okuda K, Murase T, Shigetsura Y, Narise K, Semenza GL, Nagasawa H (2011) Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis. Bioorg Med Chem 19(18):5392–5401

    Article  CAS  Google Scholar 

  138. Patel S (2016) Emerging adjuvant therapy for cancer: propolis and its constituents. J Diet Suppl. 13(3):245–268

    Google Scholar 

  139. Begnini KR, Moura de Leon PM, Thurow H, Schultze E, Campos VF, Martins Rodrigues F, Borsuk S, Dellagostin OA, Savegnago L, Roesch-Ely M, Moura S, Padilha FF, Collares T, Pêgas Henriques JA, Seixas FK (2014) Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. Evid Based Complement Alternat Med 2014:639856

    Article  Google Scholar 

  140. Lucas L, Russell A, Keast R (2011) Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Curr Pharm Des 17(8):754–768

    Article  CAS  Google Scholar 

  141. Elnagar AY, Sylvester PW, El Sayed KA (2011) (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med 77(10):1013–1019

    Article  CAS  Google Scholar 

  142. Rosignoli P, Fuccelli R, Fabiani R, Servili M, Morozzi G (2013) Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J Nutr Biochem 24(8):1513–1519

    Article  CAS  Google Scholar 

  143. Pingle SC, Matta JA, Ahern GP (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 179:155–171

    Article  CAS  Google Scholar 

  144. Alawi K, Keeble J (2010) The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 125(2):181–195

    Article  CAS  Google Scholar 

  145. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  Google Scholar 

  146. Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C (2011) The biophysical and molecular basis of TRPV1 proton gating. EMBO J 30(6):994–1002

    Article  CAS  Google Scholar 

  147. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 is activated by both acidic and basic pH. J Neurosci 29(1):153–158

    Article  CAS  Google Scholar 

  148. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2014) TRPV1: a potential drug target for treating various diseases. Cells 3(2):517–545

    Article  CAS  Google Scholar 

  149. Raoux M, Rodat-Despoix L, Azorin N, Giamarchi A, Hao J, Maingret F, Crest M, Coste B, Delmas P (2007) Mechanosensor channels in mammalian somatosensory neurons. Sensors 7(9):1667–1682

    Article  CAS  Google Scholar 

  150. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430(7001):748–754

    Article  CAS  Google Scholar 

  151. Mueller-Seitz E, Hiepler C, Petz M (2008) Chili pepper fruits: content and pattern of capsaicinoids in single fruits of different ages. J Agric Food Chem 56(24):12114–12121

    Article  CAS  Google Scholar 

  152. Luo XJ, Peng J, Li YJ (2011) Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol 650(1):1–7

    Article  CAS  Google Scholar 

  153. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  Google Scholar 

  154. Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A 97(14):8134–8139

    Article  CAS  Google Scholar 

  155. DeSimone JA, Lyall V (2006) Taste receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue. Am J Physiol Gastrointest Liver Physiol 291(6):G1005–G1010

    Article  CAS  Google Scholar 

  156. Chung S, Kim YH, Koh JY, Nam TS, Ahn DS (2011) Intracellular acidification evoked by moderate extracellular acidosis attenuates transient receptor potential V1 (TRPV1) channel activity in rat dorsal root ganglion neurons. Exp Physiol 96(12):1270–1281

    Article  CAS  Google Scholar 

  157. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5(6):546–551

    Article  CAS  Google Scholar 

  158. Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB (2009) Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain 144(1–2):84–94

    Article  CAS  Google Scholar 

  159. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA (2004) The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 558(Pt 1):147–159

    Article  CAS  Google Scholar 

  160. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Desimone JA (2005) A novel vanilloid receptor-1 (VR-1) variant mammalian salt taste receptor. Chem Senses 30(Suppl 1):i42–i43

    Article  CAS  Google Scholar 

  161. Ruiz C, Gutknecht S, Delay E, Kinnamon S (2006) Detection of NaCl and KCl in TRPV1 knockout mice. Chem Senses 31(9):813–820

    Article  CAS  Google Scholar 

  162. Smith KR, Treesukosol Y, Paedae AB, Contreras RJ, Spector AC (2012) Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses. Am J Physiol Regul Integr Comp Physiol 303(11):R1195–R1205

    Article  CAS  Google Scholar 

  163. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  CAS  Google Scholar 

  164. Riera CE, Vogel H, Simon SA, le Coutre J (2007) Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 293(2):R626–R634

    Article  CAS  Google Scholar 

  165. Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27(51):14147–14157

    Article  CAS  Google Scholar 

  166. Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, Yamanaka K, Matsumura K, Kobayashi S (2005) TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res Mol Brain Res 136(1–2):91–98

    Article  CAS  Google Scholar 

  167. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54(3):379–386

    Article  CAS  Google Scholar 

  168. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208

    Article  CAS  Google Scholar 

  169. Kühn FJ, Kühn C, Lückhoff A (2009) Inhibition of TRPM8 by icilin distinct from desensitization induced by menthol and menthol derivatives. J Biol Chem 284(7):4102–4111

    Article  CAS  Google Scholar 

  170. Rohács T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    Article  CAS  Google Scholar 

  171. Sarria I, Ling J, Zhu MX, Gu JG (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP2: distinction from tachyphylaxis. J Neurophysiol 106(6):3056–3066

    Article  CAS  Google Scholar 

  172. Yudin Y, Lukacs V, Cao C, Rohacs T (2011) Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 589(Pt 24):6007–6027

    Article  CAS  Google Scholar 

  173. Rohács T, Lopes CM, Jin T, Ramdya PP, Molnár Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100(2):745–750

    Article  CAS  Google Scholar 

  174. Voets T, Nilius B (2007) Modulation of TRPs by PIPs. J Physiol 582(Pt 3):939–944

    Article  CAS  Google Scholar 

  175. Laska M, Distel H, Hudson R (1997) Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses 22(4):447–456

    Article  CAS  Google Scholar 

  176. Kehrl W, Sonnemann U, Dethlefsen U (2004) Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope 114(4):738–742

    Article  Google Scholar 

  177. Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, Nilius B, Voets T (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem 282(5):3325–3336

    Article  CAS  Google Scholar 

  178. Lübbert M, Kyereme J, Schöbel N, Beltrán L, Wetzel CH, Hatt H (2013) Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons. PLoS One 8(10):e77998

    Article  CAS  Google Scholar 

  179. Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol 49:395–426

    Article  CAS  Google Scholar 

  180. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272(47):29672–29680

    Article  CAS  Google Scholar 

  181. Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Séguéla P (2014) Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain 10:43

    Article  CAS  Google Scholar 

  182. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21

    Article  CAS  Google Scholar 

  183. Kress M, Karasek J, Ferrer-Montiel AV, Scherbakov N, Haberberger RV (2008) TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem Cell Biol 130(4):655–667

    Article  CAS  Google Scholar 

  184. Elg S, Marmigere F, Mattsson JP, Ernfors P (2007) Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 503(1):35–46

    Article  CAS  Google Scholar 

  185. Crockett SL, Robson NK (2011) Taxonomy and Chemotaxonomy of the Genus Hypericum. Med Aromat Plant Sci Biotechnol 5 (Special Issue 1):1–13

    Google Scholar 

  186. Philippu A (2001) In vivo neurotransmitter release in the locus coeruleus – effects of hyperforin, inescapable shock and fear. Pharmacopsychiatry 34(Suppl 1):S111–S115

    Article  CAS  Google Scholar 

  187. Kaehler ST, Sinner C, Chatterjee SS, Philippu A (1999) Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus. Neurosci Lett 262(3):199–202

    Article  CAS  Google Scholar 

  188. Treiber K, Singer A, Henke B, Müller WE (2005) Hyperforin activates nonselective cation channels (NSCCs). Br J Pharmacol 145(1):75–83

    Article  CAS  Google Scholar 

  189. Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium.Eur. J Neurosci 21(10):2692–2700

    Google Scholar 

  190. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse Trp2, the homologue of the human Trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96(5):2060–2064

    Article  CAS  Google Scholar 

  191. Menco BP, Carr VM, Ezeh PI, Liman ER, Yankova MP (2001) Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. J Comp Neurol 438(4):468–489

    Article  CAS  Google Scholar 

  192. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96(10):5791–5796

    Article  CAS  Google Scholar 

  193. Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295(5559):1493–1500

    Article  CAS  Google Scholar 

  194. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99(9):6376–6381

    Article  CAS  Google Scholar 

  195. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    Article  CAS  Google Scholar 

  196. Nilius B, Biro T, Owsianik G (2014) TRPV3: time to decipher a poorly understood family member! J Physiol 592(Pt 2):295–304

    Article  CAS  Google Scholar 

  197. Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285(24):18749–18758

    Article  CAS  Google Scholar 

  198. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401(6751):386–389

    CAS  Google Scholar 

  199. LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL (2006) Two members of the TRPP family of ion channels, PKD1L3 and PKD2L1, are co-expressed in a subset of taste receptor cells. J Neurochem 98(1):68–77

    Article  CAS  Google Scholar 

  200. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium (1994). Cell 77(6):881–894

    Google Scholar 

  201. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10(2):151–160

    Article  CAS  Google Scholar 

  202. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272(5266):1339–1342

    Article  CAS  Google Scholar 

  203. Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 17(1):178–187

    Article  CAS  Google Scholar 

  204. Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J (2000) Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 64(3):241–251

    Article  CAS  Google Scholar 

  205. Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca-Prados M, Somlo S (1998) Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54(3):564–568

    Article  CAS  Google Scholar 

  206. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401(6751):383–386

    CAS  Google Scholar 

  207. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197

    Article  CAS  Google Scholar 

  208. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 408(6815):990–994

    Article  CAS  Google Scholar 

  209. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442(7105):934–938

    Article  CAS  Google Scholar 

  210. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103(33):12569–12574

    Article  CAS  Google Scholar 

  211. Inada H, Kawabata F, Ishimaru Y, Fushiki T, Matsunami H, Tominaga M (2008) Off-response property of an acid-activated cation channel complex PKD1L3–PKD2L1. EMBO Rep 9(7):690–697

    Article  CAS  Google Scholar 

  212. Kataoka S, Yang R, Ishimaru Y, Matsunami H, Kinnamon JC, Finger TE (2008) The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 33(3):243–254

    Article  CAS  Google Scholar 

  213. Ishii S, Misaka T, Kishi M, Kaga T, Ishimaru Y, Abe K (2009) Acetic acid activates PKD1L3-PKD2L1 channel – a candidate sour taste receptor. Biochem Biophys Res Commun 385(3):346–350

    Article  CAS  Google Scholar 

  214. Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y (2011) Sour taste responses in mice lacking PKD channels. PLoS One 6(5):e20007

    Article  CAS  Google Scholar 

  215. Nelson TM, Lopezjimenez ND, Tessarollo L, Inoue M, Bachmanov AA, Sullivan SL (2010) Taste function in mice with a targeted mutation of the Pkd1l3 gene. Chem Senses 35(7):565–577

    Article  CAS  Google Scholar 

  216. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278(23):20890–20897

    Article  CAS  Google Scholar 

  217. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278(24):21493–21501

    Article  CAS  Google Scholar 

  218. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    Article  CAS  Google Scholar 

  219. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280(23):22540–22548

    Article  CAS  Google Scholar 

  220. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10(12):1421–1430

    Article  CAS  Google Scholar 

  221. Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M (2013) Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol 84(5):736–750

    Article  CAS  Google Scholar 

  222. Straub I, Mohr F, Stab J, Konrad M, Philipp SE, Oberwinkler J, Schaefer M (2013) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol 168(8):1835–1850

    Article  CAS  Google Scholar 

  223. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24(10):851–874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Research Council of the KU Leuven (OT/12/091, GOA/14/011, EF/95/010, and PF-TRPLe) and the Flemish Research Foundation (FWO, G.0702.12, G.0896.12, G.0765.13, and G.0C77.15 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Talavera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boonen, B., Startek, J.B., Talavera, K. (2016). Chemical Activation of Sensory TRP Channels. In: Krautwurst, D. (eds) Taste and Smell. Topics in Medicinal Chemistry, vol 23. Springer, Cham. https://doi.org/10.1007/7355_2015_98

Download citation

Publish with us

Policies and ethics