Skip to main content

Superfluidity in Neutron Star Matter

  • Chapter
  • First Online:
Book cover Physics of Neutron Star Interiors

Part of the book series: Lecture Notes in Physics ((LNP,volume 578))

Abstract

The research on the superfluidity of neutron matter can be traced back to Migdal’s observation that neutron stars are good candidates for being macroscopic superfluid systems [1]. And, in fact, during more than two decades of neutron-star physics the presence of neutron and proton superfluid phases has been invoked to explain the dynamical and thermal evolution of a neutron star. The most striking evidence is given by post-glitch timing observations [2],[3], but also the cooling history is strongly influenced by the possible presence of super- fluid phases [4],[5]. On the theoretical side, the onset of superfluidity in neutron matter or in the more general context of nuclear matter was investigated soon after the formulation of the Bardeen, Cooper, and Schrieffer (BCS) theory of superconductivity [6] and the pairing theory in atomic nuclei [7],[8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. B. Migdal, Soviet Physics JETP 10, 176 (1960).

    MathSciNet  Google Scholar 

  2. J. A. Sauls, in Timing Neutron Stars, ed. by H. Ögelman and E. P. J. van den Heuvel, (Dordrecht, Kluwer, 1989) pp. 457.

    Google Scholar 

  3. S. Tsuruta, Phys. Rep. 292, 1 (1998).

    Article  ADS  Google Scholar 

  4. H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000).

    Article  ADS  Google Scholar 

  5. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. Bohr, B. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).

    Article  ADS  Google Scholar 

  7. A. Bohr, B. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York, 1974).

    Google Scholar 

  8. L. N. Cooper, R. L. Mills, and A. M. Sessler, Phys. Rev. 114, 1377 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. J. Emery and A. M. Sessler, Phys. Rev. 119, 248 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970).

    Article  ADS  Google Scholar 

  11. T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).

    Article  ADS  Google Scholar 

  12. J. M. C. Chen, J. W. Clark, R. D. Davé, and V. V. Khodel, Nucl. Phys. A555, 59 (1993).

    ADS  Google Scholar 

  13. U. Lombardo, ‘Superfluidity in Nuclear Matter’, in Nuclear Methods and Nuclear Equation of State, ed. by M. Baldo, (World Scientific, Singapore, 1999) pp. 458–510.

    Google Scholar 

  14. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, 1963).

    Google Scholar 

  15. P. Nozières, Le problème à N corps (Dunod, Paris, 1963).

    MATH  Google Scholar 

  16. P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1966).

    Google Scholar 

  17. J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, New York, 1964).

    MATH  Google Scholar 

  18. A. B. Migdal, Theory of Finite Systems and Applications to Atomic Nuclei (Benjamin, New York, 1964).

    Google Scholar 

  19. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

    Google Scholar 

  20. M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B283, 8 (1992).

    ADS  Google Scholar 

  21. M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C52, 975 (1995).

    ADS  Google Scholar 

  22. M. Lacombe, B. Loiseaux, J. M. Richard, R. Vinh Mau, J. Côté, D. Pirès, and R. de Tourreil, Phys. Rev. C21, 861 (1980).

    ADS  Google Scholar 

  23. R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C29, 1207 (1984).

    ADS  Google Scholar 

  24. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

    Google Scholar 

  25. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C48, 792 (1993).

    ADS  Google Scholar 

  26. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C51, 38 (1995).

    ADS  Google Scholar 

  27. R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C53, 1483 (1996).

    ADS  Google Scholar 

  28. L. Amundsen and E. Østgaard, Nucl. Phys. A442, 163 (1985).

    ADS  Google Scholar 

  29. M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nucl. Phys. A536, 349 (1992).

    ADS  Google Scholar 

  30. Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Nucl. Phys. A607, 425 (1996).

    ADS  Google Scholar 

  31. M. Baldo, Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and H.-J. Schulze, Phys. Rev. C58, 1921 (1998).

    ADS  Google Scholar 

  32. V. A. Khodel, V. V. Khodel, and J. W. Clark, Phys. Rev. Lett. 81, 3828 (1998).

    Article  ADS  Google Scholar 

  33. A. L. Goodman, Nucl. Phys. A186, 475 (1972); Phys. Rev. C60, 014331 (1999).

    ADS  Google Scholar 

  34. L. Amundsen and E. Østgaard, Nucl. Phys. A437, 487 (1985).

    ADS  Google Scholar 

  35. U. Lombardo and H.-J. Schulze

    Google Scholar 

  36. M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nucl. Phys. A515, 409 (1990).

    ADS  Google Scholar 

  37. V. A. Khodel, V. V. Khodel, and J. W. Clark, Nucl. Phys. A598, 390 (1996).

    ADS  Google Scholar 

  38. Ø. Elgarøy and M. Hjorth-Jensen, Phys. Rev. C57, 1174 (1998).

    ADS  Google Scholar 

  39. T. Alm, G. Röpke, and M. Schmidt, Z. Phys. A337, 355 (1990).

    ADS  Google Scholar 

  40. B. E. Vonderfecht, C. C. Gearhart, W. H. Dickho., A. Polls, and A. Ramos, Phys. Lett. B253, 1 (1991).

    ADS  Google Scholar 

  41. T. Alm, B. L. Friman, G. Röpke, and H. Schulz, Nucl. Phys. A551, 45 (1993).

    ADS  Google Scholar 

  42. H. Stein, A. Schnell, T. Alm, and G. Röpke, Z. Phys. A351, 295 (1995).

    ADS  Google Scholar 

  43. T. Alm, G. Röpke, A. Sedrakian, and F. Weber, Nucl. Phys. A406, 491 (1996).

    ADS  Google Scholar 

  44. M. Baldo, U. Lombardo, P. Schuck, and A. Sedrakian, Condensed Matter Theories, Vol. 12, ed. by J. W. Clark (Nova Science Publishers, 1997), pp. 265–277.

    Google Scholar 

  45. Ø. Elgarøy, L. Engvik, E. Osnes, and M. Hjorth-Jensen, Phys. Rev. C57, R1069 (1998).

    ADS  Google Scholar 

  46. U. Lombardo, H.-J. Schulze, and W. Zuo, Phys. Rev. C59, 2927 (1999).

    ADS  Google Scholar 

  47. A. Sedrakian, G. Röpke, and T. Alm, Nucl. Phys. A594, 355 (1995).

    ADS  Google Scholar 

  48. A. Sedrakian, T. Alm, and U. Lombardo, Phys. Rev. C55, R582 (1997).

    ADS  Google Scholar 

  49. G. Röpke, A. Schnell, P. Schuck, and U. Lombardo, Phys. Rev. C61, 024306 (2000).

    ADS  Google Scholar 

  50. A. Sedrakian and U. Lombardo, Phys. Rev. Lett. 84, 602 (2000).

    Article  ADS  Google Scholar 

  51. J. Cugnon, P. Deneye, and A. Lejeune, Z. Phys. A326, 409 (1987).

    ADS  Google Scholar 

  52. I. Bombaci and U. Lombardo, Phys. Rev. C44, 1892 (1991).

    ADS  Google Scholar 

  53. W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C60, 024605 (1999).

    ADS  Google Scholar 

  54. Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Nucl. Phys. A604, 466 (1996).

    ADS  Google Scholar 

  55. M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys. Rev. C58, 3688 (1998); C61, 055801 (2000).

    ADS  Google Scholar 

  56. I. Vidaña, A. Polls, A. Ramos, L. Engvik, and M. Hjorth-Jensen, Phys. Rev. C62, 035801 (2000).

    ADS  Google Scholar 

  57. P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  58. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New-York, 1971).

    Google Scholar 

  59. L. P. Gorkov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961).

    Google Scholar 

  60. T. Papenbrock and G. F. Bertsch, Phys. Rev. C59, 2052 (1999).

    ADS  Google Scholar 

  61. H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Phys. Rev. Lett. 85, 2418 (2000).

    Article  ADS  Google Scholar 

  62. J. W. Clark, C.-G. Källman, C.-H. Yang, and D. A. Chakkalakal, Phys. Lett. B61, 331 (1976).

    ADS  Google Scholar 

  63. J. M. C. Chen, J. W. Clark, E. Krotschek, and R. A. Smith, Nucl. Phys. A451, 509 (1986).

    ADS  Google Scholar 

  64. T. L. Ainsworth, J. Wambach, and D. Pines, Phys. Lett. B222, 173 (1989).

    ADS  Google Scholar 

  65. J. Wambach, T. L. Ainsworth, and D. Pines, Nucl. Phys. A555, 128 (1993).

    ADS  Google Scholar 

  66. H.-J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, and U. Lombardo, Phys. Lett. B375, 1 (1996).

    ADS  Google Scholar 

  67. S. Babu and G. E. Brown, Ann. Phys. (N.Y.) 78, 1 (1973).

    Article  ADS  Google Scholar 

  68. O. Sjöberg, Ann. Phys. (N.Y.) 78, 39 (1973).

    Article  ADS  Google Scholar 

  69. S.-O. Bäckmann, C.-G. Källman, and O. Sjöberg, Phys. Lett. 43B, 263 (1973).

    ADS  Google Scholar 

  70. A. D. Jackson, E. Krotschek, D. E. Meltzer, and R. A. Smith, Nucl. Phys. A386, 125 (1982).

    ADS  Google Scholar 

  71. W. H. Dickho., A. Faessler, H. Müther, and Shi-Shu Wu, Nucl. Phys. A405, 534 (1983).

    ADS  Google Scholar 

  72. S.-O. Bäckmann, G. E. Brown, and J. A. Niskanen, Phys. Rep. 124, 1 (1985).

    Article  ADS  Google Scholar 

  73. P. Bozek, Nucl. Phys. A657, 187 (1999); Phys. Rev. C62, 054316 (2000).

    ADS  Google Scholar 

  74. M. Baldo and A. Grasso, Phys. Lett. B485, 115 (2000).

    ADS  Google Scholar 

  75. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25C, 83 (1976).

    Article  ADS  Google Scholar 

  76. Zuo Wei, G. Giansiracusa, U. Lombardo, N. Sandulescu, and H.-J. Schulze, Phys. Lett. B421, 1 (1998).

    ADS  Google Scholar 

  77. U. Lombardo and P. Schuck, ‘Self-energy effects in neutron matter superfluidity’, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lombardo, U., Schulze, HJ. (2001). Superfluidity in Neutron Star Matter. In: Blaschke, D., Sedrakian, A., Glendenning, N.K. (eds) Physics of Neutron Star Interiors. Lecture Notes in Physics, vol 578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44578-1_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44578-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42340-9

  • Online ISBN: 978-3-540-44578-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics