Skip to main content

The Genus Thiobacillus

  • Reference work entry

Introduction

Ever since the genus Thiobacillus was first described in 1904, the ability to grow while using a reduced sulfur compound as a source of energy has been considered sufficiently important taxonomically to merit classifying all Gram-negative, sulfur-oxidizing, nonphototrophic rods in this genus. However, as studies using modern taxonomic methods began to reveal that some of the species are only superficially related, virtually every paper describing a new Thiobacillus species in the last decade has mentioned the need to reorganize the genus. Most of this reorganization has now been done (Kelly and Wood, 2000a), and the authors are grateful to D.P. Kelly and A. Wood for permission to see and use their resulting manuscripts prior to publication.

The effect of the reorganization is dramatic (Table 1). In the last edition of The Prokaryotes, the genus Thiobacillusincluded 17 species. There are now only three species left—all autotrophs, and all members of the β-subclass of the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Batchelor, B., and A. W. Lawrence. 1978 Autotrophic denitrification using elemental sulphur J. Water Poll. Control Fed. 5 1986–2001

    Google Scholar 

  • Beijerinck, M. W. 1904 Phénomèenes de réduction produits par les microbes Arch. Neerland. Sci. Ex. Nat. (Sect. 2) 9 131–157

    Google Scholar 

  • Beudeker, R. F. 1982 Obligate Chemolithotrophy: Its Ecophysiological Implications for Thiobacillus neapolitanus (PhD thesis) University of Groningen Groningen, The Netherlands 85–100

    Google Scholar 

  • Boon, M. 1996 Theoretical and Experimental Methods in the Modelling of Bio-oxidation Kinetics of Sulphide Minerals (PhD thesis) Delft University of Technology Delft, The Netherlands 23–118

    Google Scholar 

  • Borichewski, R. M. 1967 Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus thiooxidans J. Bacteriol. 93 597–599

    PubMed  CAS  Google Scholar 

  • Bos, P., T. F. Huber, K. Ch. A. M. Luyben, and J. G. Kuenen. 1988 Feasibility of a Dutch process for microbial desulphurization of coal Resources, Conservation and Recycling 1 279–291

    Article  CAS  Google Scholar 

  • Bos, P., and J. G. Kuenen. 1990 Microbial treatment of coal In: H. Ehrlich and C. Brierley (Eds.) Microbial Mineral Recovery McGraw-Hill New York, NY 344–377

    Google Scholar 

  • Brierley J. A., and A. S. Lockwood. 1977 The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system FEMS Microbiol. Lett. 2 163–165

    Article  CAS  Google Scholar 

  • Brierley, J. A., P. A. Norris, D. P. Kelly, and N. W. Le Roux. 1978 Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus Eur. J. Appl. Microbiol. Biotechnol. 5 291–299

    Article  CAS  Google Scholar 

  • Brinkhoff, T., G. Muyzer, C. O. Wirsen, and J. Kuever. 1999a Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacterium isolated from a Thioploca mat Int. J. Syst. Bacteriol. 49 875–879

    Article  PubMed  Google Scholar 

  • Brinkhoff, T., G. Muyzer, C. O. Wirsen, and J. Kuever. 1999b Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotropic sulfur-oxidizing bacteria isolated from an intertidal mud flat Int. J. Syst. Bacteriol. 49 385–392

    Article  PubMed  Google Scholar 

  • Bryant, R. D., K. M. McGroarty, J. W. Costerion, and E. J. LaishIey. 1983 Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis) Can. J. Microbiol. 29 1159–1170

    Article  Google Scholar 

  • Cohen, Y., and J. G. Kuenen. 1976 Growth yields and excretion products of Thiobacillus neapolitanus grown in a chemostat In: Abstracts of the Annual Meeting of the American Society of Microbiology, 1976 120

    Google Scholar 

  • De Bruyn, J. C., F. C. Boogerd, P. Bos, and J. G. Kuenen. 1990 Floating filter, a novel method for the isolation and enumeration of acidophilic thermophilic, and other fastidious organisms J. Microbiol. Meth. 56 2891–2894

    Google Scholar 

  • Drobner, E., H. Huber, R. Rachel, and K. O. Stetter. 1992 Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer Arch. Microbiol. 157 213–217

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, C. G., and G. Mitrenga. 1981 Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria FEMS Microbiol. Lett. 10 209–212

    Article  CAS  Google Scholar 

  • Gommers, P. J. F., and J. G. Kuenen. 1988 Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium Arch. Microbiol. 150 117–125

    Article  CAS  Google Scholar 

  • Gottschal, G. C., and J. G. Kuenen. 1980 Selective enrichment of facultatively chemolithotrophic Thiobacilli and related organisms in continuous culture FEMS Microbiol. Lett. 7 241–247

    Article  CAS  Google Scholar 

  • Guay, R., and M. Silver. 1975 Thiobacillus acidophillus sp. nov.: Isolation and some physiological characteristics Can. J. Microbiol. 21 281–288

    Article  PubMed  CAS  Google Scholar 

  • Guitoneau, G., and J. Keiling. 1932 L’évolution et la solubilisation du soufre élémentaire dans la terre arable Annales Agronomiques N.S. 2 690–725

    Google Scholar 

  • Hallberg, K. B., and E. B. Lindström. 1994 Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile Microbiol. 140 3451–3456

    Article  CAS  Google Scholar 

  • Harrison. A. P. 1983 Genomic and physiological comparisons between heterotrophic Thiobacilli and Acidiphilium cryptum: Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev Int. J. Syst. Bacteriol. 33 211–217

    Article  Google Scholar 

  • Harrison, A. P. 1984 The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat Ann. Rev. Microbiol. 38 265–292

    Article  CAS  Google Scholar 

  • Hazeu, W. W. Bijleveld, J. T. C. Grotenhuis, E. Kakes, and J. G. Kuenen. 1986 Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans Ant. v. Leeuwenhoek 52 507–518

    Article  CAS  Google Scholar 

  • Hazeu, W., W. H. Batenburg-van der Vegte, P. Bos, R. K. van der Pas, and J. G. Kuenen. 1988 The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans Arch. Microbiol. 150 574–579

    Article  CAS  Google Scholar 

  • Huber, H., and K. O. Stetter. 1989 Thiobacillus prosperus sp. nov., represents a new group of halotolerent metal–mobilizing bacteria isolated from a marine geothermal field Arch. Microbiol. 15(1) 479–485

    Article  CAS  Google Scholar 

  • Jannasch. H. W. 1985a The chemosynthetic support of life and the microbial diversity at deep sea hydrothermal vents Proc. R. Soc. (London) B225 277–297

    Google Scholar 

  • Jannasch, H. W., C. O. Wirson, D. C. Nelson, and L. A. Robertson. 1985b Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent Int. J. Syst. Bacteriol. 35 422–424

    Article  CAS  Google Scholar 

  • Katayama-Fujimura, Y., I. Kawashima, N. Tsuzaki, and H. Kuraishi. 1983 Reidentification of Thiobacillus perometabolis ATCC 27793 and Thiobacillus sp. strain A2 with reference to a new species. Thiobacillus rapidicrescens sp. nov Int. J. Syst. Bacteriol. 33 532–538

    Article  Google Scholar 

  • Katayama-Fujimura, Y., I. Kawashima, N. Tsuzaki., and H. Kuraishi. 1984 Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev. emend., Thiobacillus perometabolis. and Thiobacillus intermedius Int. J. Syst. Bacteriol. 34 139–144

    Article  CAS  Google Scholar 

  • Kelly, D. P. 1969 Regulation of chemoautotrophic metabolism. 1: Toxicity of phenylalanine to thiobacilli Archiv Mikrobiol. 69 330–342

    Article  CAS  Google Scholar 

  • Kelly, D. P., and A. P. Wood. 1982 Autotrophic growth of Thiobacillus A2 on methanol FEMS Microbiol. Lett. 15 229–233

    Article  CAS  Google Scholar 

  • Kelly, D. P., and A. P. Harrison. 1989 The genus Thiobacillus In: J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 1842–1858

    Google Scholar 

  • Kelly, D. P., and A. P. Wood. 2000a Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain Int. J. Syst. Evol. Microbiol. 50 547–550

    Article  PubMed  Google Scholar 

  • Kelly, D. P., and A. P. Wood. 2000b Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov Int. J. Syst. Evol. Microbiol. 50 511–516

    Article  PubMed  Google Scholar 

  • Kuenen. J. G. 1975 Colorless sulfur bacteria and their role in the sulfur cycle Plant & Soil 43 49–76

    Article  CAS  Google Scholar 

  • Kuenen, J. G., L. A. Robertson, and H. van Germerden. 1985 Microbial interactions among aerobic and anaerobic sulphur oxidizing bacteria Adv. Microb. Ecol. 8 1–59

    Article  CAS  Google Scholar 

  • Kuenen, J. G., and L. A. Robertson. 1987 Ecology of nitrification and denitrification In: J. A. Cole and S. J. Ferguson (Eds.) The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge, England 162–218

    Google Scholar 

  • Kuenen, J. G. 1989a The colorless sulfur bacteria In: J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 1834–1837

    Google Scholar 

  • Kuenen, J. G., and L. A. Robertson. 1989b The Genus Thiomicrospira In: J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 1858–1861

    Google Scholar 

  • Kuenen, J. G., and L. A. Robertson. 1989c The genus Thiosphaera In: Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 1861–1862

    Google Scholar 

  • Le Roux, N. W., D. S. Wakerly, and S. D. Hunt. 1977 Thermophilic thiobacillus-type bacteria from Icelandic thermal areas J. Gen. Microbiol. 100 197–201

    Google Scholar 

  • London, J. 1963 Thiobacillus intemedius nov. sp.: A novel type of facultative autotroph Archiv Mikrobiol 46 329–337

    Article  Google Scholar 

  • London, J., and S. C. Rittenberg. 1966 Effect of organic matter on the growth of Thiobacillus intermedius J. Bacteriol. 91 1062–1069

    PubMed  CAS  Google Scholar 

  • Lu, M. C., A. Matin, and S. C. Rittenberg. 1971 Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids Archiv Mikrobiol 79 354–366

    Article  CAS  Google Scholar 

  • Mason, J., D. P. Kelly, and A. P. Wood. 1987 Chemolithotrophic and autotrophic growth of Thermothrix thiopara and some thiobacilli on thiosulphate and polythionates, and a reassessment of the growth yields of Thermothrix thiopara in chemostat culture J. Gen. Microbiol. 133 1249–1256

    CAS  Google Scholar 

  • Mason, J., and D. P. Kelly. 1988 Thiosulfate oxidation by ohligately heterotrophic bacteria Microb. Ecol. 15 123–134

    Article  CAS  Google Scholar 

  • Matin, A., and S. C. Rittenberg. 1970 Utilization of glucose in heterotrophic media by Thiobacillus intermedius J. Bacteriol. 104 234–238

    PubMed  CAS  Google Scholar 

  • McKintosh, M. E. 1978 Nitrogen fixation by Thiobacillus ferrooxidans J. Gen. Microbiol. 105 215–218

    Google Scholar 

  • Mizoguchi, T., T. Sato, and T. Okabe. 1976 New sulphur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov sp. and Thiobacillus delicatus nov. sp J. Ferment. Technol. 5 181–191

    Google Scholar 

  • Moreira, D., and R. Amils. 1997 Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli proposal for Thiomonas gen. nov Int. J. Syst. Bacteriol. 47 522–528

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. C., and H. W. Jannasch. 1983 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures Arch. Microbiol. 136 262–269

    Article  CAS  Google Scholar 

  • Nelson, D. C., N. P. Revsbech, and B. B. Jørgensen. 1986 The microoxic/anoxic niche of beggiatoa spp.: A microelectrode survey of marine and freshwater strains Appl. Environ. Microbiol. 52 161–168

    PubMed  CAS  Google Scholar 

  • Otte, S., J. G. Kuenen, L. P. Nielsen, H. W. Paerl, J. Zopfi, H. N. Schulz, A. Teske, B. Strotmann. V. A. Gallardo, and B. B. Jørgensen. 1999 Nitrogen, carbon and sulphur metabolism in natural Thioploca samples Appl. Environ. Microbiol. 65 3148–3157

    PubMed  CAS  Google Scholar 

  • Robertson, L A., and J. G. Kuenen. 1983a Anaerobic and aerobic denitrification by sulphide oxidizing bacteria from waste water In: W. J. van den Brink (Ed.) Anaerobic Waste Water Treatment TNO Corp. Com. Dept. The Hague, Netherlands 3–12

    Google Scholar 

  • Robertson, L A., and J. G. Kuenen. 1983b Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium J. Gen. Microbiol. 129 2847–2855

    CAS  Google Scholar 

  • Robertson, L A., R. Comelise, R. Zeng, and J. G. Kuenen. 1989a The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrification Ant. v. Leeuwenhoek 56 301–309

    Article  CAS  Google Scholar 

  • Roy, A. B., and P. A. Trudinger. 1970 The Biochemistry of Inorganic Compounds of Sulphur Cambridge University Press London

    Google Scholar 

  • Schnaitman, K., and D. G. Lundgren. 1965 Organic compounds in the spent medium of Ferrobacillus ferrooxidans Can. J. Microbiol. 1(1) 23–27

    Article  PubMed  CAS  Google Scholar 

  • Shooner, F., J. Bousquet, and R. D. Tyagi. 1996 Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus. sp. nov Int. J. Syst. Bacteriol. 46 409–415

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M. P., and D. G. Lundgren. 1959 Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans 1: An improved medium and a harvesting procedure for securing high cell yields J. Bacteriol. 77 642–647

    PubMed  CAS  Google Scholar 

  • Smith, D. W., and S. C. Rittenberg. 1974 On the suifur requirement for growth of Thiobacillus intermedius Arch. Microbiol. 100 65–71

    Article  PubMed  CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988a Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy J. Gen. Microbiol. 134 1407–1417

    CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988b Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6 J. Gen. Microbiol. 134 3031–3039

    CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988c Oxidation of carbon disulphide as the sole source ofenergy for the autotrophic growth of Thiobacillus thioparus strain TK-m J. Gen. Microbiol. 134 3041–3048

    CAS  Google Scholar 

  • Sokolova, G. A., and G. I. Karavaiko. 1968 In: P. Rabinovitz (Ed.), trans. from Russian Physiology and Geochemical Activity of Thiobacilli [first published 1964] Israel Programme for Scientific Translations Jerusalem, Israel

    Google Scholar 

  • Sorokin, D. Y., L. A. Robertson, and J. G. Kuenen. 1992 Catenococcus thiocyclus gen. nov. sp. nov.—a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area J. Gen. Microbiol. 138 2287–2292

    Google Scholar 

  • Sorokin, D. Y., L. A. Robertson, and J. G. Kuenen. 1996 Sulfur cycling in Catenococcus thiocyclus FEMS Microb. Ecol. 19 117–125

    Article  CAS  Google Scholar 

  • Sorokin D. Y., A. M. Lysenko, L. L. Mityushina, T. P. Tourova, B. E. Jones, F. A. Rainey, L. A. Robertson, and J. G. Kuenen. 2001 Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes Int. J. Syst. Evol. Microbiol 51 565–580

    PubMed  CAS  Google Scholar 

  • Starkey, R. L. 1935 Isolation of some bacteria which oxidize thiosulfate Soil Sci. 39 197–219

    Article  CAS  Google Scholar 

  • Stefess, G. C., and J. G. Kuenen. 1989 Factors influencing elemental sulphur production from sulphide or thiosulphate by autotrophic thiobacilli Forum Mikrobiol. 12 92

    Google Scholar 

  • Stetter. K. O. 1988 Extremely thermophilic chemolithoautotrophic archaebacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Publishers Madison, WI 167–176

    Google Scholar 

  • Suylen, G. M. D. H., G. C. Stefess, and J. G. Kuenen. 1986 Chemolithotrophic potential of a Hyphomicrobium species capable of growth on methylated sulphur compounds Arch. Microbiol. 146 192–198

    Article  CAS  Google Scholar 

  • Swaby, R. J. 1975 Biosuper-biological superphosphate In: K. D. McLachlan (Ed.) Sulphur in Australasian Agriculture Sydney University Press Sydney, Australia 213–220

    Google Scholar 

  • Taylor, B. F., D. S. Hoare, and S. L. Hoare. 1971 Thiobacillus denitrificans as an obligate chemolithotroph: Isolation and growth studies Archiv Mikrobiol. 8 193–204

    Article  Google Scholar 

  • Temple, K. L, and A. R. Colmer. 1951 The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans J. Bacteriol. 62 605–611

    PubMed  CAS  Google Scholar 

  • Timmer ten Hoor, A. 1975 A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Netherlands J. Sea Res. 9 343–51

    Google Scholar 

  • Timmer ten Hoor, A. 1977 Denitrificerende Kleurloze Zwavelbacterien (PhD thesis) University of Groningen Groningen, The Netherlands

    Google Scholar 

  • Trudinger, P. A. 1967 Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil J. Bacteriol. 93 550–559

    PubMed  CAS  Google Scholar 

  • Tuovinen, O. H., and D. P. Kelly. 1972 Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores Zeitschr. Allg. Mikrobiol. 12 311–346

    Article  CAS  Google Scholar 

  • Tuovinen. O. H., and D. P. Kelly. 1973 Studies on the growth of Thiobacillus ferrooxidans. I: Use of membrane filters and ferrous iron agar to determine viable numbers and comparison with 14CO2-fixation and iron oxidation as measures of growth Archiv Mikrobiol. 88 285–298

    Article  CAS  Google Scholar 

  • Tuovinen, O. H., D. P. Kelly, C. S. Dow, and M. Eccleston. 1978 Metabolic transitions in cultures of acidophilic thiobacilli In: L. E. Murr, A. E. Torma, and J. A. Briedy (Eds.) Metallurgical Applications of Bacterial Leaching and Related Phenomena Academic Press New York, NY 61–81

    Chapter  Google Scholar 

  • Tuttle, J. H., and H. W. Jannasch. 1972 Occurrence and types of Thiobacillus–like bacteria in the sea Limnol. Oceanogr. 17 532–543

    Article  CAS  Google Scholar 

  • Tuttle, J. H., and H. W. Jannasch. 1973 Sulfide and thiosulfate oxidizing bacteria in anoxic marine basins Marine Biol. 20 64–70

    Article  CAS  Google Scholar 

  • Tuttle, J. H., P. E. Holmes, and H. W., Jannasch. 1974 Growth rate stimulation of marine pseudomonads by thiosulfate Archiv Mikrobiol. 99 1–14

    CAS  Google Scholar 

  • Vishniac, W., and M. Santer. 1957 The thiobacilli Bacteriol. Rev. 21 195–213

    PubMed  CAS  Google Scholar 

  • Visser, J. M., G. C. Stefess, L. A. Robertson, and J. G. Kuenen. 1997 Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfidic wastes Ant. v. Leeuwenhoek 72 127–134

    Article  CAS  Google Scholar 

  • Vitolins. M. I., and R. J. Swaby. 1969 Activity of sulphur oxidizing micro–organisms in some Australian soils Austral. J. Soil Res. 7 171–193

    Article  CAS  Google Scholar 

  • Waksman, S. A., and J. S. Joffe. 1922 Microorganisms concerned in the oxidation of sulfur in the soil. II: Thiobacillus thiooxidans a new sulfur–oxidizing bacterium isolated from the soil J. Bacteriol. 7 239–256

    PubMed  CAS  Google Scholar 

  • Wieringa, K. T. 1966 Solid media with elemental sulphur for detection of sulphur oxidizing microbes Ant. v. Leeuwenhoek 32 183–186

    Article  CAS  Google Scholar 

  • Williams, R. A. D., and D. S. Hoare. 1972 Physiology of a new facultatively autotrophic thermophilic Thiobacillus J. Gen. Microbiol. 70 555–566

    PubMed  CAS  Google Scholar 

  • Wood, A. P., and D. P. Kelly. 1985 Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species Thiobacillus tepidarius Int. J. Syst. Bacteriol. 35 434–437

    Article  CAS  Google Scholar 

  • Wood, A. P., and D. P. Kelly. 1988 Isolation and physiological characterization of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile Arch. Microbiol. 149 339–343

    Article  CAS  Google Scholar 

  • Wood, A. P., and D. P. Kelly. 1993 Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions Arch. Microbiol. 159 45–47

    Article  CAS  Google Scholar 

  • Wood, A. P., and D. P. Kelly. 1999 Isolation and physiological characterization of Thiobacillus thyasyris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira flexuosa Arch. Microbiol. 152 160–166

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Robertson, L.A., Kuenen, J.G. (2006). The Genus Thiobacillus . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_37

Download citation

Publish with us

Policies and ethics