Skip to main content

The Genera Pediococcus and Tetragenococcus

  • Reference work entry
The Prokaryotes

Introduction

The genera Pediococcus and Tetragenococcus are typical lactic acid bacteria (LAB) in being Gram positive, catalase negative, and oxidase negative. They grow under facultatively aerobic to microaerophilic conditions. They are homofermentative and produce lactic acid but no CO2 from glucose and are not able to reduce nitrate. The uniformly spherical cells are never ovoid or elongated (Günther and White, 1961b), and they differ from all other LAB by forming tetrads via alternate division in two perpendicular directions (Fig. 1). Thus, they never form chains typical of the other genera of coccus-shaped organisms Leuconostoc, Lactococcus and Streptococcus, which form chains as a result of division in one plane. The name “Pediococcus” came from the suggestion by Balcke (1884), which was based on the observation that the cells divide in one plane (the Greek noun pedium means a plane surface). The genus Pediococcus (Claussen 1903) is incorrectly cited as Pediococcus(Balcke 1884)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abee, T. 1995a Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms FEMS Microbiol. Lett. 129 1–10

    PubMed  CAS  Google Scholar 

  • Abee, T., L. Krockel, and C. Hill. 1995b Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning Int. J. Food Microbiol. 28 169–185

    PubMed  CAS  Google Scholar 

  • Aerny, J. 1985 Origine de l’histamine dans les vins: Connaissances actuells Bull. OIV 656–657 1016–1019

    Google Scholar 

  • Aguirre, M., and M. D. Collins. 1992 Phylogenetic analysis of some Aerococcus-like organisms from urinary tract infections: Description of Aerococcus urinae sp. nov J. Gen. Microbiol. 138 401–405

    PubMed  CAS  Google Scholar 

  • Andrews, J., and R. B. Gilliland. 1952 Super-attenuation of beer: A study of three organisms capable of causing abnormal attenuations J. Inst. Brewing 58 189–196

    CAS  Google Scholar 

  • Anon. 1993 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 44 Int. J. Syst. Bacteriol. 43 188–189

    Google Scholar 

  • Archibald, F. 1986 Manganese: Its acquisition by and function in the lactic acid bacteria CRC Crit. Rev. Microbiol. 13 63–109

    CAS  Google Scholar 

  • Ariahu, C. C., U. Ukpabi, and K. O. Mbajunwa. 1999 Production of African breadfruit (Treculia africana) and soybean (Glycine max) seed based food formulations. 2: Effects of germination and fermentation on microbiological and physical properties Plant Foods Hum. Nutr. 54 207–216

    PubMed  CAS  Google Scholar 

  • Atkins, J. T., J. Tillman, T. Q. Tan, and G. J. Demmler. 1994 Pediococcus pentosaceus catheter-associated infection in an infant with gastroschisis Pediatr. Infect. Dis. 13 75–76

    CAS  Google Scholar 

  • Atrih, A., N. Rekhif, J. B. Milliere, and G. Lefebvre. 1993 Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19 Can. J. Microbiol. 39 1173–1179

    CAS  Google Scholar 

  • Ayhan, K., N. Kolsarici, and G. A. Ozkan. 1999 The effects of a starter culture on the formation of biogenic amines in Turkish soudjoucks Meat Sci. 53 183–188

    PubMed  CAS  Google Scholar 

  • Aymerich, T., H. Holo, L. S. Håvarstein, M. Hugas, M. Garriga, and I. F. Nes. 1996 Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins Appl. Environ. Microbiol. 62 1676–1682

    PubMed  CAS  Google Scholar 

  • Baccus-Taylor, G., K. A. Glass, J. B. Luchansky, and A. Maurer. 1993 Fate of Listeria monocytogenes and pediococcal starter culture during the manufacture of chicken summer sausage Poult. Sci. 72 1772–1778

    PubMed  CAS  Google Scholar 

  • Back, W. 1978a Elevation of Pediococcus cerevisiae subsp. dextrinicus Coster and White to species status Pediococcus dextrinicus (Coster and White) comb. nov Int. J. Syst. Bacteriol 28 523–527

    Google Scholar 

  • Back, W. 1978b Zur Taxonomie der Gattung Pediococcus: Phänotypische und genotypische Abgrenzung der bisher bekannten Arten sowie Beschreibung einer neuen bierschädlichen Art: Pediococcus inopinatus Brauwissenschaft 31 237–250, 312–320, and 336–343

    Google Scholar 

  • Back, W., and E. Stackebrandt. 1978c DNS-DNS-Homologiestudien innerhalb der Gattung Pediococcus Arch. Microbiol. 118 79–85

    CAS  Google Scholar 

  • Back, W. 1994 Farbatlas und Handbuch der Getränkebiologie, Teil l Verlag Hans Carl, Nuremberg, Germany

    Google Scholar 

  • Back, W. 2000 Farbatlas und Handbuch der Getränkebiologie, TeiI 2 Verlag Hans Carl, Nuremberg, Germany

    Google Scholar 

  • Baele, M., K. Chiers, L. A. Devriese, H. E. Smith, H. J. Wisselink, M. Vaneechoutte, and F. Haesebrouck. 2001 The Gram-positive tonsillar and nasal flora of piglets before and after weaning J. Appl. Microbiol. 91 997–1003

    PubMed  CAS  Google Scholar 

  • Balcke, J. 1884 Über häufig vorkommende Fehler in der Bierbereitung Wochenschr. Brauerei 1 181–184

    Google Scholar 

  • Baliarda, A., H. Robert, M. Jebbar, C. Blanco, A. Deschamps, and C. Le Marrec. 2003 Potential osmoprotectants for the lactic acid bacteria Pediococus pentosaceus and Tetragenococcus halophila Int. J. Food Microbiol. 84 13–20

    PubMed  CAS  Google Scholar 

  • Barney, M., A. Volgyi, A. Navarro, and D. Ryder. 2001 Riboprinting and 16S rRNA sequencing for identification of brewery Pediococcus isolates Appl. Environ. Microbiol. 67 553–560

    PubMed  CAS  Google Scholar 

  • Barros, R. R., M. de G. S. Carvalho, J. M. Peralta, R. R. Facklam, and L. M. Teixeira. 2001 Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources J. Clin. Microbiol 39 1241–1246

    PubMed  CAS  Google Scholar 

  • Barton, L. L., E. D. Rider, and R. W. Coen. 2001 Bacteremic infection with Pediococcus: Vancomycin-resistant opportunist Pediatrics 107 775–776

    PubMed  CAS  Google Scholar 

  • Bayarri, S., A. Herrera, M. P. Conchello, A. A. Arino, R. Lazaro, and C. Yague. 1998 Influence of meat processing and meat starter microorganisms on the degradation of organochlorine contaminants J. Agric. Food Chem. 46 3187–3193

    CAS  Google Scholar 

  • Beneduce, L., G. Spano, A. Vernile, D. Tarantino, and S. Massa. 2004 Molecular characterization of lactic acid populations associated with wine spoilage J. Basic Microbiol. 44 10–16

    PubMed  CAS  Google Scholar 

  • Bennik, M. H. J., E. J. Smid, and L. G. M. Gorris. 1997 Vegetable-associated Pediococcus parvulus produces pediocin PA-1 Appl. Environ. Microbiol. 63 2074–2076

    PubMed  CAS  Google Scholar 

  • Bennik, M. H. J., B. Vanloo, R. Brasseur, L. M. G. Gorris, and E. J. Smid. 1998 A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: Full characterization and interaction with target organisms Biochim. Biophys. Acta 1373 47–58

    PubMed  CAS  Google Scholar 

  • Ben Omar, N., F. Ampe, M. Raimbault, J. P. Guyot, and P. Tailliez. 2000 Molecular diversity of lactic bacteria from cassava sour starch (Colombia) System. Appl. Microbiol. 23 285–291

    Google Scholar 

  • Bergan, T., R. Solberg, and O. Solberg. 1984 Fatty acid and carbohydrate cell composition in pediococci and aerococci, and identification of related species In: T. Bergan (Ed.) Methods in Microbiology Academic Press, London, UK 16 179–211

    Google Scholar 

  • Berry, E. D., R. W. Hutkins, and R. W. Mandigo. 1991 The use of bacteriocin-producing Pediococcus acidilactici to control postprocessing Listeria monocytogenes contamination of Frankfurters J. Food Prot. 54 681–686

    Google Scholar 

  • Beverly, M. B. F. Basile, and K. J. Voorhees. 1997 Fatty acid analysis of beer spoiling microorganisms using pyrolysis mass spectrometry J. Am. Soc. Brew. Chem. 55 79–82

    CAS  Google Scholar 

  • Bhowmik, T., and E. H. Marth. 1990a Peptide-hydrolysing enzymes of Pediococcus species Microbios 62 197–211

    CAS  Google Scholar 

  • Bhowmik, T., and E. H. Marth. 1990b Role of Micrococcus and Pediococcus species in cheese ripening: A review J. Dairy Sci. 73 859–866

    CAS  Google Scholar 

  • Bhowmik, T., R. Riesteper, A. A. J. S. van Boekel, and E. H. Marth. 1990c Characteristics of low-fat cheddar cheese made with added Micrococcus and Pediococcus species Milchwissenschaft 45 230–235

    CAS  Google Scholar 

  • Bhugaloo-Vial, P., X. Dousset, A. Metivier, O. Sorokine, P. Anglade, P. Boyaval, and D. Marion. 1996 Purification and amino acid sequences of piscicocins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity Appl. Environ. Microbiol. 62 4410–4416

    PubMed  CAS  Google Scholar 

  • Bhunia, A. K., M. C. Johnson, and B. Ray. 1988 Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici H J. Appl. Bacteriol. 65 261–268

    PubMed  CAS  Google Scholar 

  • Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray. 1991 Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus aidilactici H Appl. Environ. Microbiol. 57 1265–1267

    PubMed  CAS  Google Scholar 

  • Björkroth, J., and W. Holzapfel. 2003 Genera Leuconostoc, Oenococcus and Weissella In: M. Dworkin (Ed.) The Prokaryotes, 3rd ed. (electronic version) Springer-Verlag, New York, NY

    Google Scholar 

  • Blood, R. M. 1975 Lactic acid bacteria in marinated herring: III. 1 In: J. G. Carr, C. V. Cutting, and G. C. Whiting (Eds.) Lactic Acid Bacteria in Beverages and Foods Academic Press, London, UK 195–208

    Google Scholar 

  • Bouton, Y., P. Guyot, and R. Grappin. 1998 Preliminary characterization of microflora of Comté cheese J. Appl. Microbiol. 85 123–131

    PubMed  CAS  Google Scholar 

  • Bover-Cid, S., and W. H. Holzapfel. 1999 Improved screening procedure for biogenic amine production by lactic acid bacteria Int. J. Food Microbiol. 53 33–41

    PubMed  CAS  Google Scholar 

  • Brashears, M. M., D. Jaroni, and J. Trimble. 2003 Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle J. Food Prot. 66 355–363

    PubMed  CAS  Google Scholar 

  • Breukink, E., I. Wiedemann, C. Van Kraaij, O. P. Kuipers, H. Sahl, and B. De Kruijff. 1999 Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic Science 286 2361–2364

    PubMed  CAS  Google Scholar 

  • Bruno, M. E. C., and T. J. Montville. 1993 Common mechanistic action of bacteriocins from lactic acid bacteria Appl. Environ. Microbiol. 59 3003–3010

    PubMed  CAS  Google Scholar 

  • Bukhtiyarova, M., R. Yang, and R. B. Ray. 1994 Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain Appl. Environ. Microbiol. 60 3405–3408

    PubMed  CAS  Google Scholar 

  • Cai, Y., S. Kumai, M. Ogawa, Y. Benno, and T. Nakase. 1999a Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation Appl. Environ. Microbiol. 65 2901–2906

    PubMed  CAS  Google Scholar 

  • Cai, Y., P. Suyanandana, P. Saman, and Y. Benno. 1999b Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns J. Gen. Appl. Microbiol. 45 177–184

    PubMed  CAS  Google Scholar 

  • Caldwell, S. L., D. J. McMahon, C. J. Oberg, and J. R. Broadbent. 1999 Induction and characterization of Pediococcus acidilactici temperate bacteriophage System. Appl. Microbiol. 22 514–519

    Google Scholar 

  • Calicioglu, M., N. G. Faith, D. R. Buege, and J. B. Luchansky. 1997 Viability of Escherichia coli O157:H7 in fermented semidry low-temperature-cooked beef summer sausage J. Food Prot. 60 1158–1162

    Google Scholar 

  • Callon, C., C. Millet, and M. C. Montel. 2004 Diversity of lactic acid bacteria isolated from AOC Salers cheese J. Dairy Res. 71 231–244

    PubMed  CAS  Google Scholar 

  • Carr, J. G. 1968 Bactéries lactiques des boissons fermentées, leur écologie et leur classification Ferment. Vinific. 1 175–189

    CAS  Google Scholar 

  • Carr, J. G. 1970 Tetrad-forming cocci in ciders J. Appl. Bacteriol. 33 371–379

    PubMed  CAS  Google Scholar 

  • Chen, Y., R. Shapira, M. Eisenstein, and T. J. Montville. 1997 Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure Appl. Environ. Microbiol. 63 524–531

    PubMed  CAS  Google Scholar 

  • Chenoll, E., M. C. Macian, and R. Aznar. 2003 Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques System. Appl. Microbiol. 26 546–556

    CAS  Google Scholar 

  • Chikindas, M. L., M. J. García-Garcerá, A. J. M. Driessen, A. M. Ledeboer, J. Nissen-Meyer, I. F. Nes, T. Abee, W. N. Konings, and G. Venema. 1993 Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells Appl. Environ. Microbiol. 59 3577–3584

    PubMed  CAS  Google Scholar 

  • Chikindas, M. L., K. Venema, A. M. Ledeboer, G. Venema, and J. Kok. 1995 Expression of lactococcin A and pediocin PA-1 in heterologous hosts Lett. Appl. Microbiol. 21 183–189

    PubMed  CAS  Google Scholar 

  • Christensen, J. J., H. Vibits, J. Ursing, and B. Korner. 1991 Aerococcus-like organism, a newly recognized potential urinary tract pathogen J. Clin. Microbiol. 29 1049–1053

    PubMed  CAS  Google Scholar 

  • Claussen, N. H. 1903 Etude sur les bactéries dites sarcines et sur les maladies qu’elles provoquent dans la bière Comptes-rendus des Travaux du Laboratoire Carlsberg 6 64–83

    Google Scholar 

  • Claussen, N. H. 1904 Über die Sarcinakrankheit des Bieres und ihre Erreger Z. ges. Brauwesen 27 117–121 and 137–142

    Google Scholar 

  • Coderre, P. E., and G. A. Somkuti. 1999 Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria Curr. Microbiol. 39 295–301

    PubMed  CAS  Google Scholar 

  • Collins, M. D., A. M. Williams, and S. Wallbanks. 1990 The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: Description of Tetragenococcus gen. nov FEMS Microbiol. Lett. 70 255–262

    CAS  Google Scholar 

  • Collins, M. D., U. Rodrigues, C. Ash, M. Aguirre, J. A. E. Farrow, A. Martinez-Murcia, B. A. Phillips, A. M. Williams, and S. Wallbanks. 1991 Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA FEMS Microbiol. Lett. 77 5–12

    CAS  Google Scholar 

  • Colman, G., and A. Efstratiou. 1987 Vancomycin-resistant leuconostocs, lactobacilli and now pediococci J. Hosp. Infect. 2 1–3

    Google Scholar 

  • Coppola, R., M. Nanni, M. Iorizzo, A. Sorrentino, E. Sorrentino, and L. Grazia. 1997 Survey of lactic acid bacteria isolated during the advanced stages of the ripening of Parmigiano Reggiano cheese J. Dairy Res. 64 305–310

    CAS  Google Scholar 

  • Coster, E., and H. R. White. 1964 Further studies of the genus Pediococcus J. Gen. Microbiol. 26 185–197

    Google Scholar 

  • Costilow, R. N., and P. Gerhardt. 1983 Dialysis pure-culture process for lactic acid fermentation of vegetables J. Food Sci. 48 1632–1636

    CAS  Google Scholar 

  • Coventry, M. J., K. Muirhead, and M. W. Hickey. 1995 Partial characterisation of pediocin PO2 and comparison with nisin for biopreservation of meat products Int. J. Food Microbiol. 26 133–145

    PubMed  CAS  Google Scholar 

  • Dachs, E. 1981 NBB-Nachweismedium für bierschädliche Bakterien Brauwelt 121 1778–1782 and 1784.

    Google Scholar 

  • Dacre, J. C. 1958 A note on the pediococci in New Zealand cheddar cheese J. Dairy Res. 25 414–417

    Google Scholar 

  • Davis, C. R., D. Wibowo, G. H. Fleet, and T. H. Lee. 1988 Properties of wine lactic acid bacteria: their potential enological significance Am. J. Enol. Viticult. 39 137–142

    CAS  Google Scholar 

  • Deibel, R. H., G. D. Wilson, and C. F. Niven Jr. 1961 Microbiology of meat curing. IV: A lyophilized Pediococcus cerevisiae starter culture for fermented sausage Appl. Microbiol. 9 239–243

    PubMed  CAS  Google Scholar 

  • Delfini, C. 1989 Ability of wine malolactic bacteria to produce histamine Sci. Aliments 9 413–416

    CAS  Google Scholar 

  • Dellaglio, F., L. G. Trovatelli, and P. G. Sarra. 1981 DNA-DNA homology among representative strains of the genus Pediococcus Zbl. Bakteriol. Mikrobiol. Hyg. 1. Abt., Orig. C 2 140–150

    Google Scholar 

  • Dellaglio, F., and S. Torriani. 1986 DNA-DNA homology, physiological characteristics and distribution of lactic acid bacteria isolated from maize silage J. Appl. Bacteriol. 60 83–92

    CAS  Google Scholar 

  • De Vos, W. M., G. Jung, and H.-G. Sahl. 1991 Appendix: Definitions and nomenclature of lantibiotics In: G. Jung and H.-G. Sahl (Eds.) Nisin and Novel Lantibiotics Escom Publishers, Leiden, The Netherlands 457–463

    Google Scholar 

  • Dobrogosz, W. J., and R. W. Stone. 1962 Oxygen metabolism in Pediococcus pentosaceus. I: Role of oxygen and catalase J. Bacteriol. 84 716–723

    PubMed  CAS  Google Scholar 

  • Dobson, C. M., H. Deneer, S. Lee, S. Hemmingsen, S. Glaze, and B. Ziola. 2002 Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer Int. J. Syst. Evol. Microbiol. 52 2003–2010

    PubMed  CAS  Google Scholar 

  • Donhauser, S. 1993 Mikrobiologie des Bieres In: H. H. Dittrich (Ed.) Mikrobiologie der Lebensmittel: Getränke Behr’s Verlag, Hamburg, Germany 109–182

    Google Scholar 

  • Dykes, G. A., T. J. Britz, and A. von Holy. 1994 Numerical taxonomy and identification of lactic acid bacteria from spoiled vacuum-packaged Vienna sausages J. Appl. Bacteriol. 76 264–252

    Google Scholar 

  • Edwards, C. G., and K. A. Jensen. 1992 Occurrence and characterization of lactic acid bacteria from Washington State wines: Pediococcus spp Am. J. Enol. Viticult. 43 233–238

    Google Scholar 

  • Eijsink, V. G. H., M. Skeie, P. H. Middelhoven, M. B. Brurberg, and I. F. Nes. 1998 Comparative studies of Class IIa bacteriocins of lactic acid bacteria Appl. Environ. Microbiol. 64 3275–3281

    PubMed  CAS  Google Scholar 

  • Elegado, F. B., W. J. Kim, and D. Y. Kwon. 1997 Rapid purification, partial characterization, and antimicrobial spectrum of the bacteriocin, Pediocin AcM, from Pediococcus acidilactici M Int. J. Food Microbiol. 37 1–11

    PubMed  CAS  Google Scholar 

  • Eliseeva, G. S., S. S. Nagornaia, O. E. Zherebilo, V. S. Podgorskii, and E. A. Ignatova. 2001 Biological deacidification of wines using lactic-acid bacteria and yeasts [in Russian] Prikl. Biokhim. Mikrobiol. 37 487–493

    PubMed  CAS  Google Scholar 

  • El-Soda, M., N. Ezzat, T. El-Howby, and I. Zeiday. 1994 The peptide hydrolase system of pediococci: Cell-bound enzymatic activities Microbiol. Aliments Nutr. 12 145–154

    CAS  Google Scholar 

  • Ennahar, S., Y. Cai, and Y. Fujita. 2003 Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis Appl. Environ. Microbiol. 69 444–451

    PubMed  CAS  Google Scholar 

  • Eschenbecher, F., and W. Back. 1976 Erforschung und Nomenklatur der bierschädlichen Kokken Brauwissenschaft 29 125–131

    Google Scholar 

  • Etchells, J. L., H. P. Fleming, and T. A. Bell. 1975 Factors influencing the growth of lactic acid bacteria during the fermentation of brined cucumbers. V. 2 In: J. G. Carr, C. V. Cutting, and G. C. Whiting (Eds.) Lactic Acid Bacteria in Beverages and Food Academic Press, London, UK 281–305

    Google Scholar 

  • Euzéby, J. P. 1998 Necessary corrections according to Judicial Opinions 16, 48 and 52 Int. J. Syst. Bacteriol. 48 613

    PubMed  Google Scholar 

  • Evans, J. B., and L. M. Schultes. 1969 DNA base composition and physiological characteristics of the genus Aerococcus Int. J. Syst. Bacteriol. 19 159–163

    Google Scholar 

  • Evans, J. B. 1986 Genus Aerococcus In: P. H. A. Sneath, N. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins, Baltimore, MD 2 1080

    Google Scholar 

  • Everson, C. W., W. E. Danner, and P. A. Hammes. 1970 Improved starter culture for semidry sausage Food Technol. 24 42–44

    Google Scholar 

  • Facklam, R. R., D. Hollis, and M. D. Collins. 1989 Identification of Gram-positive coccal and coccobacillary vancomycin-resistant bacteria J. Clin Microbiol. 27 724–730

    PubMed  CAS  Google Scholar 

  • Facklam, R. R., and J. A. Elliot. 1995 Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci Clin. Microbiol. Rev. 8 479–495

    PubMed  CAS  Google Scholar 

  • Facklam, R. R., M. Lovgren, P. L. Shewmaker, and G. Tyrrell. 2003 Phenotypic description and antimicrobial susceptibilities of Aerococcus sanguinicola isolates from human clinical samples J. Clin. Microbiol. 41 2587–2592

    PubMed  CAS  Google Scholar 

  • Fath, M. J., and B. Kolter. 1993 ABC transporters: Bacterial exporters Microbiol. Rev. 57 995–1017

    PubMed  CAS  Google Scholar 

  • Felix, J. V., M. A. Papathanasopoulos, A. A. Smith, A. Von Holy, and J. W. Hastings. 1994 Characterization of leucocin B-TA11a: a bacteriocin from Leuconostoc carnosum TA11a isolated from meat Curr. Microbiol. 29 207–212

    PubMed  CAS  Google Scholar 

  • Fimland, G., O. R. Blingsmo, K. Sletten, G. Jung, I. F. Nes, and J. Nissen-Meyer. 1996 New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity Appl. Environ. Microbiol. 62 3313–3318

    PubMed  CAS  Google Scholar 

  • Fimland, G., R. Jack, G. Jung, I. F. Nes, and J. Nissen-Meyer. 1998 The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus Appl. Environ. Microbiol. 64 5057–5060

    PubMed  CAS  Google Scholar 

  • Fitzsimons, A., F. Duffner, G. Brophy, O. O’Kiely, and M. O’Connell. 1992 Assessment of Pediococcus acidilactici as a potential silage inoculant Appl. Environ. Microbiol. 58 3047–3052

    PubMed  CAS  Google Scholar 

  • Fleury, Y., M. A. Dayem, J. J. Montagne, E. Chaboisseau, J. P. Le Caer, P. Nicolas, and A. Delfour. 1996 Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides J. Biol. Chem. 271 14421–14429

    PubMed  CAS  Google Scholar 

  • Franke, C. M., K. J. Leenhouts, A. J. Haandrikman, J. Kok, G. Venema, and K. Venema. 1996 Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis J. Bacteriol. 178 1766–1769

    PubMed  CAS  Google Scholar 

  • Franz, C. M. A. P., and A. von Holy. 1996b Bacterial populations associated with pasteurized vacuum-packaged Vienna sausages Food Microbiol. 13 165–174

    Google Scholar 

  • Fregeau Gallagher, N. L., M. Sailer, W. P. Niemczura, T. T. Nakashima, M. E. Stiles, and J. C. Vederas. 1997 Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: Spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria Biochemistry 36 15062–15072

    PubMed  CAS  Google Scholar 

  • Fremaux, C., Y. Héchard, and Y. Cenatiempo. 1995 Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105 Microbiology 141 1637–1645

    PubMed  CAS  Google Scholar 

  • Fukui, S., O. L. A. Obayashi, and K. Kitahara. 1957 Studies on the pentose metabolism by microorganisms: A new type—lactic acid fermentation of pentoses by lactic acid bacteria J. Gen. Appl. Microbiol. 3 258–268

    CAS  Google Scholar 

  • Garcia-Vallve, S., A. Romeu, and J. Palau. 2000 Horizontal gene transfer of glycosyl hydrolases of the rumen fungi Molec. Biol. Evol. 17 352–361

    PubMed  CAS  Google Scholar 

  • Garvie, E. I. 1986 Genus Pediococcus In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins, Baltimore, MD 2 1075–1079

    Google Scholar 

  • Gassem, M. A. 1999 Study of the micro-organisms associated with the fermented bread (khamir) produced from sorghum in Gizan region, Saudi Arabia J. Appl. Microbiol. 86 221–225

    PubMed  CAS  Google Scholar 

  • Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999 Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactici J. Sci. Food Agric. 79 633–640

    CAS  Google Scholar 

  • Gelsomino, R., M. Vancanneyt, S. Condon, J. Swings, and T. M. Cogan. 2001 Enterococcal diversity in the environment of an Irish cheddar-type cheesemaking factory Int. J. Food Microbiol. 71 177–188

    PubMed  CAS  Google Scholar 

  • Gevers, D., G. Huys, F. Devlieghere, M. Uyttendaele, J. Debevere, and J. Swings. 2000 Isolation and identification of tetracycline resistant lactic acid bacteria from pre-packed sliced meat products System. Appl. Microbiol. 23 279–284

    CAS  Google Scholar 

  • Giacomini, A., A. Squartini, and M. P. Nuri. 2000 Nucleotide sequence and analysis of plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) involved in pediocin A production Plasmid 43 111–122

    PubMed  CAS  Google Scholar 

  • Gibbs, P. A. 1987 Novel uses for lactic acid fermentation in food preservation J. Appl. Bacteriol., Symposium Suppl. 63 51S–58S

    Google Scholar 

  • Golledge, C. L., N. Stingemore, M. Aravena, and D. Joske. 1990 Septicemia caused by vancomycin-resistant Pediococcus acidilactici J. Clin. Microbiol. 28 1678–1679

    PubMed  CAS  Google Scholar 

  • Gonzalez, C., and B. S. Kunka. 1983 Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501 Appl. Environ. Microbiol. 46 81–89

    PubMed  CAS  Google Scholar 

  • Gonzalez, C., and B. S. Kunka. 1986 Evidence for plasmid linkage of raffinose utilization and associated galactose and sucrose hydrolase activity in Pediococcus pentosaceus Appl. Environ. Microbiol. 51 105–109

    PubMed  CAS  Google Scholar 

  • Gonzalez, C., and B. S. Kunka. 1987 Plasmid associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici Appl. Environ. Microbiol. 53 2534–2538

    PubMed  CAS  Google Scholar 

  • Gonzalez-Fandos, M. E., M. Sierra, M. L. Garcia-Lopez, M. C. Garcia-Fernandez, and A. Otero. 1999 The influence of manufacturing and drying conditions on the survival and toxinogenesis of Staphylococcus aureus in two Spanish dry sausages (chorizo and salchichon) Meat Sci. 52 411–419

    PubMed  Google Scholar 

  • Graham, D., and L. L. McKay. 1985 Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus Appl. Environ. Microbiol. 50 532–534

    PubMed  CAS  Google Scholar 

  • Green, M., K. Barbadora, and M. Michaels. 1991 Recovery of vancomycin-resistant Gram-positive cocci from pediatric liver transplant recipients J. Clin. Microbiol. 29 2503–2506

    PubMed  CAS  Google Scholar 

  • Green, G., L. M. Dicks, G. Bruggeman, E. J. Vandamme, and M. L. Chikindas. 1997 Pediocin PD-1, a bactericidal antimicrobial peptide from Pediococcus damnosus NCFB 1832 Lett. Appl. Microbiol. 83 127–132

    CAS  Google Scholar 

  • Guillot, J. F. 1997 Probiotics in animal nutrition Comptes Rendus de l’Academie d’Agriculture de France 83 87–96

    Google Scholar 

  • Günther, H. L., and H. R. White. 1961a Serological characters of the pediococci J. Gen. Microbiol. 26 199–205

    PubMed  Google Scholar 

  • Günther, H. L., and H. R. White. 1961b The cultural and physiological characters of the pediococci J. Gen. Microbiol. 26 185–197

    PubMed  Google Scholar 

  • Günther, H. L., and H. R. White. 1962 Proposed designation of a neotype strain of Pediococcus cerevisiae Balcke Int. Bull. Bact. Nomencl. 12 185–187

    Google Scholar 

  • Gürtler, M., M. G. Gänzle, G. Wolf, and W. P. Hammes. 1998 Physiological diversity among strains of Tetragenococcus halophilus System. Appl. Microbiol. 21 107–112

    Google Scholar 

  • Hammes, W. P., N. Weiss, and W. H. Holzapfel. 1992 Lactobacillus and Carnobacterium In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag, New York, NY 2 1535–1594

    Google Scholar 

  • Hansen, E. C. 1879 Bidrag til kundskabom hvilke Organsimer, der kunne forekomme og leve i Øl og Ølurt Comptes-rendus des Travaux du Laboratoire Carlsberg 1 185–292

    Google Scholar 

  • Harrison Jr., A. P., and P. A. Hansen. 1950 The bacterial flora of the cecal feces of healthy turkeys J. Bacteriol. 59 197–210

    PubMed  Google Scholar 

  • Hastings, J. W., and M. E. Stiles. 1991a Antibiosis of Leuconostoc gelidum isolated from meat J. Appl. Bacteriol. 70 127–134

    PubMed  CAS  Google Scholar 

  • Hastings, J. W., M. Sailer, K. Johnson, K. L. Ray, J. C. Vederas, and M. E. Stiles. 1991b Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidium J. Bacteriol. 173 7491–7500

    PubMed  CAS  Google Scholar 

  • Håvarstein, L. S., D. B. Diep, and I. F. Nes. 1995 A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export Molec. Microbiol. 16 229–240

    Google Scholar 

  • Héchard, Y., B. Dérijard, F Letellier, and Y. Cenatiempo. 1992a Characterization and purification of mesenterecin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides J. Gen. Microbiol. 138 2725–2731

    PubMed  Google Scholar 

  • Héchard, Y., C. Jayat, F. Letellier, M. H. Ratinaud, R. Julien, and Y. Cenatiempo. 1992b A new Leuconostoc bacteriocin, mesenterecin Y105, bactericidal to Listeria monocytogenes In: R. James, C. Lazdunski, and F. Pattus (Eds.) Bacteriocins, Microcins and Lantibiotics Springer-Verlag, Berlin, Germany 421–426

    Google Scholar 

  • Heilig, H. G., E. G. Zoetendal, E. E. Vaughan, P. Marteau, A. D. Akkermans, and W. M. de Vos. 2002 Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA Appl. Environ. Microbiol. 68 114–123

    PubMed  CAS  Google Scholar 

  • Herbin, S., F. Mathieu, F. Brulé, C. Branlant, G. Lefebvre, and A. Lebrihi. 1997 Characteristics and genetic determinants of bacteriocin activities produced by Carnobacterium piscicola CP5 isolated from cheese Curr. Microbiol. 35 319–326

    PubMed  CAS  Google Scholar 

  • Hernandez-Jover, T., M. Izquierdo-Pulido, M. T. Veciana-Nogues, A. Marine-Font, and M. C. Vidal-Carou. 1997 Effect of starter cultures on biogenic amine formation during fermented sausage production J. Food Prot. 60 825–830

    CAS  Google Scholar 

  • Holck, A., L. Axelsson, S.-E. Birkeland, T. Aukrust, and H. Bloom. 1992 Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake LB 706 J. Gen. Microbiol. 138 2715–2720

    PubMed  CAS  Google Scholar 

  • Holley, R. A., and M. Blaszyk. 1997 Antibiotic challenge of meat starter cultures and effects upon fermentations Food Res. Int. 30 513–522

    CAS  Google Scholar 

  • Holzapfel, W. 1998 The Gram-positive bacteria associated with meat and meat products In: A. Davies and R. Board (Eds.) The Microbiology of Meat and Poultry Blackie Academic & Professional, London, UK 35–74

    Google Scholar 

  • Holzapfel, W. H., P. Haberer, R. Geisen, J. Björkroth, and U. Schillinger. 2001 Taxonomy and important features of probiotic microorganisms in food and nutrition Am J. Clin. Nutr. 73 (Suppl.) 365–373

    Google Scholar 

  • Homblé, F., V. Cabiaux, and J. Ruysschaert. 1998 Channel or channel-like activity associated with pore-forming proteins or peptides? Molec. Microbiol. 27 1261–1263

    Google Scholar 

  • Hoover, D. G., P. M. Walsh, K. M. Kolactis, and M. M. Daly. 1988 A bacteriocin produced by Pediococcus species associated with a 5 · 5 MDa plasmid J. Food Protect. 51 29–31

    CAS  Google Scholar 

  • Horn, N., M. L. Martinez, J. M. Martinez, P. E. Hernandez, M. J. Gasson, J. M. Rodriguez, and H. M. Dodd. 1999 Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis Appl. Environ. Microbiol. 65 4443–4450

    PubMed  CAS  Google Scholar 

  • Ito, H., R. S. Hadioetomo, S. Nikkuni, and N. Okada. 1985 Studies on the lactic acid bacteria in fish sauce (Part 1): Chemical composition and microflora of fish sauce Rep. Natl. Food Res. Inst. 47 23–30

    Google Scholar 

  • Izquierdo-Pulido, M., J. M. Carceller-Rosa, A. Marine-Font, and M. C. Vidal-Carou. 1997 Tyramine formation by Pediococcus spp. during beer fermentation J. Food Prot. 60 831–836

    CAS  Google Scholar 

  • Jack, R. W., J. R. Tagg, and B. Ray. 1995 Bacteriocins of Gram-positive bacteria Microbiol. Rev. 59 171–200

    PubMed  CAS  Google Scholar 

  • Jack, R. W., J. Wan, J. Gordon, K. Harmark, B. E. Davidson, A. J. Hillier, R. E. H. Wettenhall, M. W. Hickey, and M. J. Coventry. 1996 Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126 Appl. Environ. Microbiol. 62 2897–2903

    PubMed  CAS  Google Scholar 

  • Jensen, E. M., and H. W. Seeley. 1954 The nutrition and physiology of the genus Pediococcus J. Bacteriol. 67 484–488

    PubMed  CAS  Google Scholar 

  • Johnson, M. C., M. B. Hanlin, and B. Ray. 1992 Low pH and lactate are necessary for conversion of prepediocin to active pediocin AcH in Pediococcus acidilactici H In: Abstracts of the 92nd General Meeting of the American Society for Microbiology American Society for Microbiology, Washington, DC Abstr. O-81

    Google Scholar 

  • Jones, R. J. 2004 Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef Int. J. Food Microbiol. 90 273–282

    PubMed  Google Scholar 

  • Jung, G. 1991a Lantibiotics: A survey In: G. Jung and H.-G. Sahl (Eds.) Nisin and Novel Lantibiotics Escom Publishers, Leiden, The Netherlands 1–34

    Google Scholar 

  • Jung, G. 1991b Lantibiotics: Ribosomally synthesized biologically active polypeptides containing sulphide bridges and α,β-didehydro amino acids Angewiss. Chem. Int. Ed. Engl. 30 1051–1068

    Google Scholar 

  • Juven, B. J., R. J. Meinersmann, and N. J. Stern. 1991 Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human entero-pathogens in live poultry J. Appl. Bacteriol. 70 95–103

    PubMed  CAS  Google Scholar 

  • Kaiser, A. L., and T. J. Montville. 1996 Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles Appl. Environ. Microbiol. 62 4529–4535

    PubMed  CAS  Google Scholar 

  • Kalač, P., J. Šavel, M. Křížek, T. Pelikánová, and M. Prokopová. 2002 Biogenic amine formation in bottled beer Food Chem. 79 431–434

    Google Scholar 

  • Kanatani, K., M. Oshimura, and K. Sano. 1995 Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus Appl. Environ. Microbiol. 61 1061–1067

    PubMed  CAS  Google Scholar 

  • Kang, D. H., and D. Y. C. Fung. 1999 Reduction of Escherichia coli O157:H7 by stimulated Pediococcus acidilactici Lett. Appl. Microbiol. 29 206–210

    PubMed  CAS  Google Scholar 

  • Kim, W. H., B. Ray, and M. C. Johnson. 1992 Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici J. Appl. Bacteriol. 72 201–207

    CAS  Google Scholar 

  • Kimura, B., Y. Konagaya, and T. Fujii. 2001 Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce Int. J. Food Microbiol. 70 71–77

    PubMed  CAS  Google Scholar 

  • Kitahara, K., and A. Nakagawa. 1958 Pediococcus mevalovorus nov. spec. isolated from beer J. Gen. Appl. Microbiol. 4 21–30

    Google Scholar 

  • Klaenhammer, T. R. 1993 Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiol. Rev. 12 39–86

    PubMed  CAS  Google Scholar 

  • Knorr, D. 1998 Technological aspects related to microorganisms in functional foods Trends Food Sci. Technol. 9 295–306

    CAS  Google Scholar 

  • Kobayashi, T., B. Kimura, and T. Fujii. 2000 Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puffer fish ovaries fermented with rice-bran Int. J. Food Microbiol. 56 211–218

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., M. Kajiwara, M. Wahyuni, T. Kitakado, N. Hamada-Sato, C. Imada, and E. Watanabe. 2003 Isolation and characterization of halophilic lactic acid bacteria isolated from “terasi” shrimp paste: A traditional fermented seafood product in Indonesia J. Gen. Appl. Microbiol. 49 279–286

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., M. Kajiwara, M. Wahyuni, T. Kitakado, N. Hamada-Sato, C. Imada, and E. Watanabe. 2004 Effect of culture conditions on lactic acid production of Tetragenococus species J. Appl. Microbiol. 96 1215–1221

    PubMed  CAS  Google Scholar 

  • Kolter, R., and F. Moreno. 1992 Genetics of ribosomally synthesized peptide antibiotics Ann. Rev. Microbiol. 46 141–163

    CAS  Google Scholar 

  • Konagaya, Y., B. Kimura, M. Ishida, and T. Fuji. 2002 Purification and properties of a histidine decarboxylase from Tetragenococcus muriaticus, a halophilic lactic acid bacterium J. Appl. Bacteriol. 92 1136–1142

    CAS  Google Scholar 

  • Kulka, D., A. J. Cosbie, and T. K. Walker. 1949 Streptococcus mucilaginosus Kulka, Cosbie and Walker (spec. nov.) J. Inst. Brewing 55 315–320

    Google Scholar 

  • Kunene, N. F., I. Geornaras, A. von Holy, and J. W. Hastings. 2000 Characterization and determination of origin of lactic acid bacteria from a sorghum-based fermented weaning food by analysis of soluble proteins and amplified fragment length polymorphism fingerprinting Appl. Environ. Microbiol. 66 1084–1092

    PubMed  CAS  Google Scholar 

  • Kung Jr., L., and N. K. Ranjit. 2001 The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage J. Dairy Sci. 84 1149–1155

    PubMed  CAS  Google Scholar 

  • Kurzak, P., M. A. Ehrmann, and R. F. Vogel. 1998 Diversity of lactic acid bacteria associated with ducks System. Appl. Microbiol. 21 588–592

    CAS  Google Scholar 

  • Langston, C. W., and C. Bouma. 1960 A study of the microorganisms from grass silage. I: The cocci Appl. Microbiol. 8 212–222

    PubMed  CAS  Google Scholar 

  • Lapage, S. P., P. H. A. Sneath, E. F. Lessel, V. B. D. Skerman, H. P. R. Seeliger, and W. A. Clark. 1992 International Code of Nomenclature of Bacteria (1990 revision) American Society for Microbiology, Washington, DC 106

    Google Scholar 

  • Larsen, A. G., F. K. Vogensen, and J. Josephsen. 1993 Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401 J. Appl. Bacteriol. 75 113–122

    PubMed  CAS  Google Scholar 

  • Law, B. A., and J. Kolstad. 1983 Proteolytic systems in lactic acid bacteria Ant. v. Leeuwenhoek 49 225–245

    CAS  Google Scholar 

  • Lawson, P. A., E. Falsen, K. Truberg-Jensen, and M. D. Collins. 2001 Aerococcus sanguicola sp. nov., isolated from a human clinical source Int. J. Syst. Evol. Microbiol. 51 475–479

    PubMed  CAS  Google Scholar 

  • Lee, A. C., and Y. Fujio. 1999 Microflora of banh men, a fermentation starter from Vietnam World J. Microbiol. Biotechnol. 15 57–62

    Google Scholar 

  • Lei, V., and M. Jakobsen. 2004 Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink J. Appl. Microbiol. 96 384–397

    PubMed  CAS  Google Scholar 

  • Leisner, J. J., B. Pot, H. Christensen, G. Rusul, J. E. Olsen, B. W. Weee, K. Muhamad, and H. M. Ghazali. 1999 Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient Appl. Environ. Microbiol. 65 599–605

    PubMed  CAS  Google Scholar 

  • Le Marrec, C., B. Hyronimus, P. Bressolier, B. Verneuil, and M. C. Urdaci. 2000 Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4 Appl. Environ. Microbiol. 66 5213–5220

    PubMed  Google Scholar 

  • Leuschner, R. G., J. Bew, P. J. Simpson, P. R. Ross, and C. Stanton. 2003 Enumeration of probiotic pediococci in animal feed: interlaboratory study J. AOAC Int. 86 791–801

    PubMed  CAS  Google Scholar 

  • Lin, C. L., K. K. Bolsen, and D. Y. C. Fung. 1992 Epiphytic lactic acid bacteria succession during the pre-ensiling periods of alfalfa and maize J. Appl. Bacteriol. 73 375–387

    Google Scholar 

  • Lindner, P. 1886 Untersuchungen über Sarcina Wochenschr. Brauerei 3 789–790

    Google Scholar 

  • Lindner, P. 1887 Über ein neues in Malzmaischen vorkommendes, milchsäurebildendes Ferment Wochenschr. Brauerei 4 437–440

    Google Scholar 

  • Lindner, P. 1889 Die Ursachen des langen Weißbieres Wochenschr. Brauerei 6 181–184

    Google Scholar 

  • Litopoulou-Tzanetaki, E., D. C. Graham, and Y. Beyatli. 1989 Detection of pediococci and other non-starter organisms in American cheddar cheese J. Dairy Sci. 72 854–858

    Google Scholar 

  • Lonvaud-Funel, A. 1999 Lactic acid bacteria in the quality improvement and depreciation of wine Ant. v. Leeuwenhoek 76 317–331

    CAS  Google Scholar 

  • Luchansky, J. B., K. A. Glass, K. D. Harsono, A. J. Degnan, N. G. Faith, B. Cauvin, G. Baccus-Taylor, K. Arihara, B. Bater, A. J. Maurer, and R. B. Cassens. 1992 Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage Appl. Environ. Microbiol. 58 3053–3059

    PubMed  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.-H. Schleifer. 2004 ARB: A software environment for sequence data Nucleic Acids Res. 32 1363–1371

    PubMed  CAS  Google Scholar 

  • Maftah, A., D. Renault, C. Vignoles, Y. Héchard, P. Bressolier, M. H. Ratinaud, Y. Cenatiempo, and R. Julien. 1993 Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105 J. Bacteriol. 175 3232–3235

    PubMed  CAS  Google Scholar 

  • Manca de Nadra, M. C., and A. M. Strasser de Saad. 1995 Polysaccharide production by Pediococcus pentosaceus from wine Int. J. Food Microbiol. 27 101–106

    Google Scholar 

  • Manca de Nadra, M. C., D. Sandino de Lamellas, and A. M. Strasser de Saad. 1998 Pediocin N5p from Pediococcus pentosaceus: adsorption on bacterial strains Int. J. Food Microbiol. 39 79–85

    Google Scholar 

  • Martel, A., V. Meulenaere, L. A. Devriese, A. Decostere, and F. Haesebrouck. 2003 Macrolide and lincosamide resistance in the Gram-positive nasal and tonsillar flora of pigs Microb. Drug Resist. 9 293–297

    PubMed  CAS  Google Scholar 

  • Martínez, B., A. Rodríguez, and J. E. Suárez. 2000 Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci Microbiology 146 949–955

    PubMed  Google Scholar 

  • Marugg, J. D., C. F. Gonzalez, B. S. Kunka, A. M. Ledeboer, M. J. Pucci, M. Y. Toonen, S. A. Walker, L. C. M. Zoetmulder, and P. A. Vandenberg. 1992 Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0 Appl. Environ. Microbiol. 58 2360–2367

    PubMed  CAS  Google Scholar 

  • Mastro, T. D., J. S. Spika, P. Lozano, J. Appel, and R. R. Facklam. 1990 Vancomycin-resistant Pediococcus acidilactici: Nine cases of bacteremia J. Infect. Dis. 161 956–960

    PubMed  CAS  Google Scholar 

  • Mattila-Sandholm, T., A. Haikara, and E. Skyttae. 1993 The effect of Pediococcus damnosus and Pediococcus pentosaceus on the growth of pathogens in minced meat Int. J. Food Microbiol. 13 87–94

    Google Scholar 

  • Mees, R. H. 1934 Onderzoekingen over de Biersarcina [dissertation] Technical University of Delft, Delft, The Netherlands

    Google Scholar 

  • Métivier, A., M. Pilet, X. Dousset, O. Sorokine, P. Anglade, M. Zagorec, J. Piard, D. Marion, Y. Cenatiempo, and C. Fremaux. 1998 Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: Primary structure and genomic organization Microbiology 144 2837–2844

    PubMed  Google Scholar 

  • Miambi, E., J. P. Guyot, and F. Ampe. 2003 Identification, isolation and quantification of representative bacteria from fermented cassava dough using an integrated approach of culture-dependent and culture-independent methods Int. J. Food Microbiol. 82 111–120

    PubMed  Google Scholar 

  • Miller, K. W., R. Schamber, Y. Chen, and B. Ray. 1998a Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon Appl. Environ. Microbiol. 64 14–20

    PubMed  CAS  Google Scholar 

  • Miller, K. W., R. Schamber, O. Osmanagaoglu, and B. Ray. 1998b Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity Appl. Environ. Microbiol. 64 1997–2005

    PubMed  CAS  Google Scholar 

  • Molina, I., H. Silla, and J. Flores. 1989 Studie über die Keimflora trocken gepökelter Schinken. 3: Milchsäurebakterien Fleischwirtschaft 69 1754–1756

    Google Scholar 

  • Molina, I., P. Nieto, J. Flores, H. Silla, and H. Bermell. 1991 Study of the microflora in dry-cured ham. 5: Lipolytic activity Fleischwirtschaft 71 906–908

    Google Scholar 

  • Molina, I., and F. Toldra. 1992 Detection of proteolytic activity in microorganisms isolated from dry-cured ham J. Food Sci. 57 1308–1310

    CAS  Google Scholar 

  • Moll, G. N., W. N. Konings, and A. J. M. Driessen. 1999 Bacteriocins: Mechanism of membrane insertion and pore formation Ant. v. Leeuwenhoek 76 185–198

    CAS  Google Scholar 

  • Montville, T. J., and M. E. C. Bruno. 1994 Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins Int. J. Food Microbiol. 24 53–74

    PubMed  CAS  Google Scholar 

  • Montville, T. J., and Y. Chen. 1998 Mechanistic action of pediocin and nisin: Recent progress and unresolved questions Appl. Microbiol. Biotechnol. 50 511–519

    PubMed  CAS  Google Scholar 

  • Moore, J. E., and R. H. Madden. 1997 Preservation of vacuum-packaged pork liver pate by fermentation J. Food Protect. 60 791–794

    Google Scholar 

  • Mora, D., M. G. Fortina, C. Parini, and P. L. Manachini. 1997 Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis FEMS Microbiol. Lett. 151 231–236

    PubMed  CAS  Google Scholar 

  • Mora, D., M. G. Fortina, C. Parini, D. Daffonchio, and P. L. Manachini. 2000 Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: Relationships between pediocin AcH/PA-1 producing and non-producing strains Microbiology 146 2027–2038

    PubMed  CAS  Google Scholar 

  • Mora, D., C. Parini, M. G. Fortina, and P. L. Manachini. 2002 Multilocus hybridization typing in Pediococcus acidilactici strains Curr. Microbiol. 44 77–80

    PubMed  CAS  Google Scholar 

  • Morisset, D., and J. Frere. 2002 Heterologous expression of bacteriocins using the mesentericin Y105 dedicated transport system by Leuconostoc mesenteroides Biochimie 84 569–576

    PubMed  CAS  Google Scholar 

  • Motlagh, A. M., A. K. Bhunia, F. Szostek, T. R. Hansen, M. G. Johnson, and B. Ray. 1992a Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H Lett. Appl. Microbiol. 15 45–48

    PubMed  CAS  Google Scholar 

  • Motlagh, A. M., S. Holla, M. C. Johnson, B. Ray, and R. A. Field. 1992b Inhibition of Listeria sp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H J. Food Prot. 55 337–343

    CAS  Google Scholar 

  • Motlagh, A., M. Bukhtiyarova, and B. Ray. 1994 Complete nucleotide sequences of pSMB74, a plasmid encoding production of pediocin AcH in Pediococcus acidilacticti Lett. Appl. Microbiol. 18 305–312

    PubMed  CAS  Google Scholar 

  • Mugula, J. K., J. A. Narvhus, and T. Sorhaug. 2003a Use of starter cultures of lactic acid bacteria and yeasts in the preparation of togwa, a Tanzanian fermented food Int. J. Food Microbiol. 83 307–318

    PubMed  CAS  Google Scholar 

  • Mugula, J. K., S. A. Nnko, J. A. Narvhus, and T. Sorhaug. 2003b Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food Int. J. Food Microbiol. 80 187–199

    PubMed  CAS  Google Scholar 

  • Mugula, J. K., T. Sorhaug, and L. Stepaniak. 2003c Proteolytic activities in togwa, a Tanzanian fermented food Int. J. Food Microbiol. 84 1–12

    PubMed  CAS  Google Scholar 

  • Mundt, J. O., W. G. Beattie, and F. R. Wieland. 1969 Pediococci residing on plants J. Bacteriol. 98 938–942

    PubMed  CAS  Google Scholar 

  • Nakagawa, A., and K. Kitahara. 1959 Taxonomic studies on the genus Pediococcus J. Gen. Appl. Microbiol. 5 95–126

    Google Scholar 

  • Nakel, M., J. M. Ghuysen, and O. Kandler. 1971 Wall peptidoglycan in Aerococcus viridans strains 201 Evans and ATCC 11563 and in Gaffkya homari strain ATCC 10400 Biochemistry 25 2170–2175

    Google Scholar 

  • Navarro, L., M. Zarazaga, J. Saenz, F. Ruiz-Larrea, and C. Torres. 2000 Bacteriocin production by lactic acid bacteria isolated from Rioja red wines J. Appl. Microbiol. 88 44–51

    PubMed  CAS  Google Scholar 

  • Naylor, J., and M. E. Sharpe. 1958 Lactobacilli in Cheddar Cheese. II: Duplicate cheeses J. Dairy Res. 25 421–430

    Google Scholar 

  • Nes, I. F., D. B. Diep, L. S. Håvarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996 Biosynthesis of bacteriocins in lactic acid bacteria Ant. v. Leeuwenhoek 70 113–128

    CAS  Google Scholar 

  • Nieto, P., I. Molina, J. Flores, M. H. Silla, and S. Bermell. 1989 Lipolytic activity of microorganisms isolated from dry-cured ham In: Proceedings of the 35th International Congresss of Meat Science and Technology, Copenhagen, 1989 II 323–329

    Google Scholar 

  • Nieto Lozano, J. C., J. Nissen Meyer, K. Sletten, C. Peláz, and I. F. Nes. 1992 Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici J. Gen. Microbiol. 138 1985–1990

    PubMed  CAS  Google Scholar 

  • Nigatu, A., S. Ahrne, B. A. Gashe, and G. Molin. 1998 Randomly amplified polymorphic DNA (RAPD) for discrimination of Pediococcus pentosaceus and Ped. acidilactici and rapid grouping of Pediococcus isolates Lett. Appl. Microbiol. 26 412–416

    CAS  Google Scholar 

  • Nonomura, H., T. Yamazaki, and Y. Ohara. 1967 Die Äpfelsäure-Milchsäure-Bakterien, welche aus französischen und spanischen Weinen isoliert wurden Mitt. Klosterneuburg 17A 345–351

    Google Scholar 

  • Ogier, J.-C., O. Son, A. Gruss, P. Tailliez, and A. Delacroix-Buchet. 2002 Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis Appl. Environ. Microbiol. 68 3691–3701

    PubMed  CAS  Google Scholar 

  • Osborne, J. P., R. Mira de Orduna, G. J. Pilone, and S. Q. Liu. 2000 Acetaldehyde metabolism by wine lactic acid bacteria FEMS Microbiol. Lett. 191 51–55

    PubMed  CAS  Google Scholar 

  • Paludan-Muller, C., M. Madsen, P. Sophanodora, L. Gram, and P. L. Moller. 2002 Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations Int. J. Food Microbiol. 73 61–70

    PubMed  CAS  Google Scholar 

  • Papathanasopoulos, M. A., G. A. Dykes, A. Revol-Junelles, A. Delfour, A. von Holy, and J. W. Hastings. 1998 Sequence and structural relationships of leucocins A-, B-, and C-TA33a from Leuconostoc mesenteroides TA33a Microbiology 144 1343–1348

    PubMed  CAS  Google Scholar 

  • Parente, E., S. Grieco, and M. A. Crudele. 2001 Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy) J. Appl. Microbiol. 90 943–952

    PubMed  CAS  Google Scholar 

  • Peynaud, E., and S. Domercq. 1967 Etude de quelques coques homolactiques isolés de vins Rev. Ferment. Ind. Aliment 22 133–140

    Google Scholar 

  • Piva, A., and D. R. Headon. 1994 Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61 Microbiology 140 697–702

    PubMed  CAS  Google Scholar 

  • Porubcan, R. S., and R. L. Sellars. 1979 Lactic starter culture concentrates In: H. J. Peppler and D. Perlman (Eds.) Microbial Technology, 2nd ed Academic Press, New York, NY 1 59–68

    Google Scholar 

  • Pucci, M. J., E. R. Vedamuthu, B. S. Kunka, and P. A. Vandenbergh. 1988 Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0 Appl. Environ. Microbiol. 54 2349–2352

    PubMed  CAS  Google Scholar 

  • Quadri, L. E. N., M. Sailer, K. L. Roy, J. C. Vederas, and M. E. Stiles. 1994 Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B J. Biol. Chem. 269 12204–12211

    PubMed  CAS  Google Scholar 

  • Quadri, L. E. N., M. Kleerebezem, O. P. Kuipers, W. M. de Vos, K. L. Roy, J. C. Vederas, and M. E. Stiles. 1997 Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: Evidence for global inducer-mediated transcriptional regulation J. Bacteriol. 179 6163–6171

    PubMed  CAS  Google Scholar 

  • Raccach, M. 1981. Method for Fermenting Vegetables. US Patent 4,342,786.

    Google Scholar 

  • Raccach, M. 1987 Pediococci and biotechnology CRC Crit. Rev. Microbiol. 14 291–309

    CAS  Google Scholar 

  • Radler, F., M. Schütz, and H. W. Doell. 1970 Die beim Abbau von L-Äpfelsäure durch Milchsäurebakterien entstehenden Isomeren der Milchsäure Naturwissenchaften 57 672

    CAS  Google Scholar 

  • Ray, B. 1994 Pediocins of Pediococcus species In: L. De Vuyst and E. J. Vandamme (Eds.) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications Blackie Academic & Professional, London, UK 465–495

    Google Scholar 

  • Ray, B., R. Schamber, and K. W. Miller. 1999 The pediocin AcH precursor is biologically active Appl. Environ. Microbiol. 65 2281–2286

    PubMed  CAS  Google Scholar 

  • Reinbold, G. W., and M. S. Reddy. 1978. US Patent 4,085,228.

    Google Scholar 

  • Reuter, G. 1970 Laktobazillen und eng verwandte Mikroorganismen in Fleisch und Fleischerzeugnissen. 4. Mitteilung: Die Ökologie von Laktobazillen, Leuconostoc-Spezies und Pediokokken Fleischwirtschaft 50 1397–1399

    Google Scholar 

  • Reuter, G. 1975 Classification problems, ecology and some biochemical activities of lactobacilli in meat products In: J. G. Carr, C. V. Cutting, and G. C. Whitting (Eds.) Lactic Acid Bacteria in Beverages and Food Academic Press, New York, NY 221–229

    Google Scholar 

  • Revol-Junelles, A. M., R. Mathis, F. Krier, Y. Fleury, A. Delfour, and G. Lefebvre. 1996 Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins Lett. Appl. Microbiol. 23 120–124

    PubMed  CAS  Google Scholar 

  • Rice, S. L., and P. E. Koehler. 1976 Tyrosine and histidine decarboxylase activities of Pediococcus cerevisiae and Lactobacillus species and the production of tyramine in fermented sausages J. Milk Food Technol. 39 166–169

    CAS  Google Scholar 

  • Riebel, W. J., and J. A. Washington. 1990 Clinical and microbiologic characteristics of pediococci J. Clin. Microbiol. 28 1348–1355

    PubMed  CAS  Google Scholar 

  • Rodas, A. M., S. Ferrer, and I. Pardo. 2003 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine System. Appl. Microbiol. 26 412–422

    CAS  Google Scholar 

  • Rodriques, J. M., M. I. Martinez, and J. Kok. 2002 Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria Crit. Rev. Sci. Nutr. 42 91–121

    Google Scholar 

  • Röling, W. F. M., and H. W. van Verseveld. 1996 Characterization of Tetragenococcus halophila populations in Indonesian soy mash (kecap) fermentation Appl. Environ. Microbiol. 62 1203–1207

    PubMed  Google Scholar 

  • Röling, W. F., and H. W. van Verseveld. 1997 Growth, maintenance and fermentation pattern of the salt-tolerant lactic acid bacterium Tetragenococcus halophila in anaerobic glucose limited retention cultures Ant. v. Leeuwenhoek 72 239–243

    Google Scholar 

  • Romano, A. H., J. D. Trifone, and M. Brustolon. 1979 Distribution of the phosphoenol-pyruvate: Glucose phosphotransferase system in fermentative bacteria J. Bacteriol. 139 93–97

    PubMed  CAS  Google Scholar 

  • Ruoff, K. L., D. R. Kuritzkes, J. S. Wolfson, and M. J. Ferraro. 1988 Vancomycin-resistant Gram-positive bacteria isolated from human sources J. Clin. Microbiol. 26 2064–2068

    PubMed  CAS  Google Scholar 

  • Sahl, H.-G., M. Reis, M. Eschbach, C. Szekat, A. G. Beck-Sickinger, J. Metzger, S. Stefanovic, and G. Jung. 1991 Isolation of Pep5 prepeptides in different stages of modification In: G. Jung and H.-G. Sahl (Eds.) Nisin and Novel Lantibiotics Escom Publishers, Leiden, The Netherlands 332–346

    Google Scholar 

  • Sakaguchi, K. 1960 Vitamin and amino acid requirements of Pediococcus soyae and Pediococcus acidilactici Kitahara’s strain Bull. Agricult. Chem. Soc. Japan 24 638–643

    CAS  Google Scholar 

  • Sakaguchi, K., and H. Mori. 1969 Comparative study on Pediococcus halophilus, P. soyae, P. homari, P. urinae-equi and related species J. Gen. Appl. Microbiol. 15 159–167

    Google Scholar 

  • Sakamoto, K. 2002 Beer Spoilage Bacteria and Hop Resistance in Lactobacillus brevis [doctorate thesis] University of Groningen, Groningen, The Netherlands

    Google Scholar 

  • Sakamoto, K, and W. N. Konings. 2003 Beer spoilage bacteria and hop resistance Int. J. Food Microbiol. 89 105–124

    PubMed  CAS  Google Scholar 

  • Santos, E. M., C. Gonzalez-Fernandez, I. Jaime, and J. Rovira. 1997 Identification and characterization of lactic acid bacteria isolated from traditional chorizo made in Castilla-Leon Food Sci. Technol. Int. 3 21–29

    Google Scholar 

  • Sarma, P., and S. Mohanty. 1998 Pediococcus acidilactici pneumonitis and bacteremia in a pregnant woman J. Clin. Microbiol. 36 2392–2392

    PubMed  CAS  Google Scholar 

  • Satokari, R., T. Mattila-Sandholm, and M.-L. Suihko. 2000 Identification of pediococci by ribotyping J. Appl. Bacteriol. 88 260–265

    CAS  Google Scholar 

  • Satomi, M., B. Kimura, M. Mizoi, T. Sato, and T. Fujii. 1997 Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce [erratum]: Int. J. Syst. Bacteriol, vol. 48, p. 332] Int. J. Syst. Bacteriol. 47 832–836

    Google Scholar 

  • Schillinger, U., and W. H. Holzapfel. 2003 Culture media for lactic acid bacteria In: J. E. L. Corry, G. D. W. Curtis, and R. M. Baird (Eds.) Handbook of Culture Media for Food Microbiology Elsevier, Amsterdam, The Netherlands Progress in Industrial Microbiology 837 127–140

    Google Scholar 

  • Schoeman, H., M. A. Vivier, M. Du Toit, L. M. T. Dicks, and I. S. Pretorius. 1999 The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae Yeast 15 647–656

    PubMed  CAS  Google Scholar 

  • Schved, F., A. Lalazar, Y. Henis, and B. J. Juven. 1993 Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici J. Appl. Bacteriol. 74 67–77

    PubMed  CAS  Google Scholar 

  • Shimwell, J. L. 1948b A study of ropiness in beer. Part II: Ropiness due to tetrad-forming cocci J. Inst. Brewing 54 237–244

    CAS  Google Scholar 

  • Shimwell, J. L. 1949 Brewing bacteriology. VI: The lactic acid bacteria (Family Lactobacteriaceae) Wallerstein Laboratories Communications 12 71–88

    Google Scholar 

  • Simpson, W. J., and H. Taguchi. 1995 The genus Pediococcus, with notes on the genera Tetragenococcus and Aerococcus In: B. J. B. Wood and W. H. Holzapfel (Eds.) The Genera of Lactic Acid Bacteria Blackie Academic & Professional, London, UK 125–172

    Google Scholar 

  • Simpson, P. J., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2002 Genomic diversity within the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis Appl. Environ. Microbiol. 68 765–771

    PubMed  CAS  Google Scholar 

  • Sims, W. 1986 The isolation of pediococci from human saliva Arch. Oral Biol. 11 967–972

    Google Scholar 

  • Sire, J. M., P. Y. Donnio, R. Mesnard, P. Pouedras, and J. L. Avril. 1992 Septicemia and hepatic abscess caused by Pediococcus acidilactici Eur. J. Clin. Microbiol. Infect. Dis. 11 623–625

    PubMed  CAS  Google Scholar 

  • Smitinont, T., C. Tansakul, S. Tanasupawat, S. Keeratipibul, L. Nacarini, M. Bosco, and P. Cescutti. 1999 Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization Int. J. Food Microbiol. 51 105–111

    PubMed  CAS  Google Scholar 

  • Solberg, O., and O. G. Clausen. 1973 Vitamin requirements of certain pediococci isolated from brewery products J. Inst. Brewing 79 231–237

    CAS  Google Scholar 

  • Somkuti, G. A., and D. H. Steinberg. 2003 Pediocin production by recombinant lactic acid bacteria Biotechnol. Lett. 25 473–477

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and M. Teuber. 1988a Molecular taxonomy and phylogenetic position of lactic acid bacteria Biochemie 70 317–324

    CAS  Google Scholar 

  • Stamer, J. R. 1975 Recent developments in the fermentation of sauerkraut In: J. G. Carr, C. V. Cutting, and G. C. Whiting (Eds.) Lactic Acid Bacteria in Beverages and Food Academic Press, London, UK 267–280

    Google Scholar 

  • Stamer, J. R. 1983 Lactic acid fermentation of cabbage and cucumbers In: G. Reed (Ed.) Biotechnology Verlag Chemie, Weinheim, Germany 5 365–378

    Google Scholar 

  • Steidlova, S., and P. Kalac. 2003 The effects of using lactic acid bacteria inoculants in maize silage on the formation of biogenic amines Arch. Tierernähr 57 359–368

    PubMed  CAS  Google Scholar 

  • Stiles, M. E. 1996 Biopreservation by lactic acid bacteria Ant. v. Leeuwenhoek 70 331–345

    CAS  Google Scholar 

  • Stiles, M. E., and W. H. Holzapfel. 1997 Lactic acid bacteria of foods and their current taxonomy Int. J. Food Microbiol. 36 1–29

    PubMed  CAS  Google Scholar 

  • Swenson, J. M., R. R. Facklam, and C. Thornsberry. 1990 Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus, and Lactobacillus species Antimicrob. Agents Chemother. 34 543–549

    PubMed  CAS  Google Scholar 

  • Talon, R., D. Walter, and M. C. Montel. 2000 Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids Meat Sci. 54 41–47

    PubMed  CAS  Google Scholar 

  • Tamang, J. P. 1998 Role of microorganisms in traditonal fermented foods Indian Food Indust. 17 162–167

    Google Scholar 

  • Tanasupawat, S., and W. Daengsubha. 1983 Pediococcus species and related bacteria found in fermented foods and related materials in Thailand J. Gen. Appl. Microbiol. 29 487–506

    CAS  Google Scholar 

  • Tanasupawat, S., and K. Komagata. 1995 Lactic acid bacteria in fermented foods in Thailand World J. Microbiol. Biotechnol. 11 253–256

    Google Scholar 

  • Tankovic, J., R. Leclercq, and J. Duval. 1993 Antimicrobial susceptibility of Pediococcus spp. and genetic basis of macrolide resistance in Pediococcus acidilactici HM3020 Antimicrob. Agents Chemother. 37 789–792

    PubMed  CAS  Google Scholar 

  • Tannock, G. W. 1997 Probiotic properties of lactic-acid bacteria: Plenty of scope for R. & D Trends Biotechnol. 15 270–274

    PubMed  CAS  Google Scholar 

  • Thomas, T. D., L. L. McKay, and H. A. Morris. 1985 Lactate metabolism by pediococci isolated from cheese Appl. Environ. Microbiol. 49 908–913

    PubMed  CAS  Google Scholar 

  • Tichaczek, P. S., J. Nissen-Meyer, I. F. Nes, R. F. Vogel, and W. P. Hammes. 1992 Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673 System. Appl. Microbiol. 15 460–468

    CAS  Google Scholar 

  • Tichaczek, P. S., R. F. Vogel, and W. P. Hammes. 1993 Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174 Arch. Microbiol. 160 279–283

    PubMed  CAS  Google Scholar 

  • Tichaczek, P. S., R. F. Vogel, and W. P. Hammes. 1994 Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673 Microbiology 140 361–367

    PubMed  CAS  Google Scholar 

  • Todorov, S., and L. M. T. Dicks. 2004. Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Proc. Biochem.

    Google Scholar 

  • Torriani, S., M. Vescovo, and F. Dellaglio. 1987 Tracing Pediococcus acidilactici in ensiled maize by plasmid-encoded erythromycin resistance J. Appl. Bacteriol. 63 543–553

    Google Scholar 

  • Työppönen, S., E. Petaja, and T. Mattila-Sandholm. 2003 Bioprotectives and probiotics for dry sausages Int. J. Food Microbiol. 83 233–244

    PubMed  Google Scholar 

  • Tzanetakis, N., and E. Litopolou-Tzanetaki. 1989 Biochemical activities of Pediococcus pentosaceus isolates of dairy origin J. Dairy Sci. 72 859–863

    CAS  Google Scholar 

  • Uchida, K., and C. Kanbe. 1993 Occurrence of bacteriophages lytic for Pediococcus halophilus, a halophilic lactic acid bacterium in soy sauce fermentation J. Gen. Appl. Microbiol. 39 429–437

    CAS  Google Scholar 

  • Vafopoulou-Mastrojiannaki, A., E. Litopoulou-Tzanetakii, and N. Tzanetakis. 1994 Proteinase, peptidase and esterase activity of crude, cell free extracts of Pediococcus pentosaceus isolated from cheese Lebensm.-Wissen. Technol. 27 342–346

    Google Scholar 

  • Van Belkum, M. J., B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema. 1991 Organization and nucleotide sequences of two lactococcal bacteriocin operons Appl. Environ. Microbiol. 57 492–498

    PubMed  Google Scholar 

  • Van Belkum, M. J., and M. E. Stiles. 1995 Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum Appl. Environ. Microbiol. 61 3573–3579

    PubMed  Google Scholar 

  • Van Belkum, M. J., R. W. Worobo, and M. E. Stiles. 1997 Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis Molec. Microbiol. 23 1293–1301

    Google Scholar 

  • Vanbelle, M., E. Teller, and M. Focant. 1990 Probiotics in animal nutrition: a review Arch. Anim. Nutr. Berlin 40 543–567

    CAS  Google Scholar 

  • Van Reenen, C. A., W. H. Van Zyl, M. L. Chikindas, and L. M. T. Dicks. 2002 Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae Int. J. Food Microbiol. 81 29–40

    Google Scholar 

  • Venema, K., J. Kok, J. D. Marugg, M. Y. Toonen, A. M. Ledeboer, G. Venema, and M. L. Chikindas. 1995 Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme Molec. Microbiol. 17 515–522

    CAS  Google Scholar 

  • Victoria Moreno-Arribas, M., M. Carmen Polo, F. Jorganes, and R. Muñoz. 2003 Screening of biogenic amine production by lactic bacteria isolated from grape must and wine Int. J. Food Microbiol. 84 117–123

    PubMed  Google Scholar 

  • Von Witzingerode, H. M., A. Moter, E. Halle, H. Lohnbrunner, U. Kaisers, P. Neuhaus, and E. Halle. 2000 A case of septicemia with Pediococcus acidilactici after long term antibiotic treatment Eur. J. Clin. Microbiol. Infect. Dis. 19 946–948

    Google Scholar 

  • Waade, C., and L. H. Stahnke. 1997 Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels. Part IV: Amino acid profile Meat Sci. 46 101–114

    PubMed  CAS  Google Scholar 

  • Walter, J., C. Hertel, G. W. Tannock, C. M. Lis, K. Munro, and W. P. Hammes. 2001 Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis Appl. Environ. Microbiol. 67 2578–2585

    PubMed  CAS  Google Scholar 

  • Weese, J. S., and L. Arroyo. 2003 Bacteriological evaluation of dog and cat diets that claim to contain probiotics Can. Vet. J. 44 212–216

    PubMed  Google Scholar 

  • Weiller, H. G., and F. Radler. 1970 Milchsäurebakterien aus Wein und von Rebenblättern Zbl. Bakt., II. Abt. 124 707–732

    CAS  Google Scholar 

  • Weiller, H. G., and F. Radler. 1976 Über den Aminosäurestofwechsel von Milchsäurebakterien aus Wein Zeitschr. Lebensm. Unters. Forsch. 161 259–266

    CAS  Google Scholar 

  • Weiss, N. 1992 The genera Pediococcus and Aerococcus In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag, New York, NY 1502–1507

    Google Scholar 

  • Whittenbury, R. 1964 Hydrogen peroxide formation and catalase activity in the lactic acid bacteria J. Gen. Microbiol. 35 13–26

    PubMed  CAS  Google Scholar 

  • Whittenbury, R. 1965 A study of some pediococci and their relationship to Aerococcus viridans and the enterococci J. Gen. Microbiol. 40 97–106

    Google Scholar 

  • Wilderdyke, M. R., D. A. Smith, and M. M. Brashears. 2004 Isolation, identification and selection of lactic acid bacteria from alfalfa sprouts for competitive inhibition of foodborne pathogens J. Food. Prot. 67 947–951

    PubMed  CAS  Google Scholar 

  • Wu, C. W., L. J. Yin, and S. T. Jiang. 2004 Purification and characterization of baceriocin from Pediococcus pentosaceus ACCEL J. Agric. Food Chem. 5 1146–1151

    Google Scholar 

  • Yansanjav, A., H. Siegumfeldt, L. Jespersen, M. Vancanneyt, J. Swings, I. Hollerová, and J. J. Leisner. 2004 Detection of resistance of lactic acid bacteria to a mixture of the hop analogue compounds tetrahydroiso-α-by noninvasive measurement of intracellular pH. K Appl. Microbiol. 96 1324–1332

    CAS  Google Scholar 

  • Yildirim, Z., D. K. Winters, and M. G. Johnson. 1999 Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454 J. Appl. Microbiol. 86 45–54

    PubMed  CAS  Google Scholar 

  • Yousif, N. M. K., C. M. A. P. Franz, W. H. Holzapfel, and H. A. Dirar. 2004 Sudanese Hussuwa In: K. Steinkraus (Ed.) Handbook of Indigenous Fermented Foods, 3rd ed Marcel Dekker, New York, NY 776

    Google Scholar 

  • Yu, K. H., S. F. Luo, L. B. Liou, Y. J. Wu, W. P. Tsai, J. Y. Chen, and H. H. Ho. 2003 Concomitant septic and gouty arthritis: an analysis of 30 cases Rheumatology 42 1062–1066

    PubMed  CAS  Google Scholar 

  • Zhang, J. G., Y. Cai, R. Kobayashi, and S. Mukai. 2000 Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation J. Sci. Food Agricult. 80 1455–1460

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Back, W., Dicks, L.M.T. (2006). The Genera Pediococcus and Tetragenococcus . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_8

Download citation

Publish with us

Policies and ethics