Skip to main content

The H2-Metabolizing Prokaryotes

  • Reference work entry

1 Introduction

During the era of prebiotic evolution, which culminated in the appearance of cellular life forms, the earth had a reducing atmosphere. Fueled by volcanic activity and by magmatic outgassing, levels of atmospheric molecular hydrogen (H2) may have been as high as 1% (Walker, 1977; Kasting, 1993). Various evolutionary scenarios envisage primeval life forms with H2-based metabolism, e.g., ur-methanogens or ur-sulfate reducers (Stetter, 1992; Wächtershäuser, 1992; Edwards, 1998). With the advent of oxygenic photosynthesis (a process which may have originated as early as 3.5 billion years ago), oxygen began accumulating in the atmosphere and hydrogen levels decreased (Walker, 1977; Hayes, 1983; Blankenship, 1992; Kasting et al., 1992; Nisbet and Fowler, 1999). Concomitantly, strictly H2-dependent organisms retreated to restricted habitats. Nevertheless, H2continues to be an important and widespread metabolite in both the archaeal and bacterial realms of the microbial world,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Abdel-Basset, R., and K. P. Bader. 1998 Physiological analyses of the hydrogen gas exchange in cyanobacteria J. Photochem. Photobiol. B 43 146–151

    Article  CAS  Google Scholar 

  • Abram, J. W., and D. B. Nedwell. 1978 Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen Arch. Microbiol. 117 89–92

    Article  PubMed  CAS  Google Scholar 

  • Achtnich, C., F. Bak, and R. Conrad. 1995a Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil Biol. Fertil. Soils 19 65–72

    Article  CAS  Google Scholar 

  • Achtnich, C., A. Schuhmann, T. Wind, and R. Conrad. 1995b Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil FEMS Microbiol. Ecol. 16 61–70

    Article  CAS  Google Scholar 

  • Adams, M. W., and D. O. Hall. 1977 Isolation of the membrane-bound hydrogenase from Rhodospirillum rubrum Biochem. Biophys. Res. Commun. 77 730–737

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. W., and D. O. Hall. 1979 Purification of the membrane-bound hydrogenase of Escherichia coli Biochem. J. 183 11–22

    PubMed  CAS  Google Scholar 

  • Adams, M. W., E. Eccleston, and J. B. Howard. 1989 Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum Proc. Natl. Acad. Sci. USA 86 4932–4936

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. W. 1990 The structure and mechanism of iron-hydrogenases Biochim. Biophys. Acta 1020 115–145

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. W., and E. I. Stiefel. 1998 Biological hydrogen production: not so elementary Science 282 1842–1843

    Article  PubMed  CAS  Google Scholar 

  • Afting, C., A. Hochheimer, and R. K. Thauer. 1998 Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2 Arch. Microbiol. 169 206–210

    Article  PubMed  CAS  Google Scholar 

  • Afting, C., E. Kremmer, C. Brucker, A. Hochheimer, and R. K. Thauer. 2000 Regulation of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis Arch. Microbiol 174 225–232

    Article  PubMed  CAS  Google Scholar 

  • Aggag, M., and H. G. Schlegel. 1973 Studies on a Gram-positive hydrogen bacterium, Nocardia opaca strain 1b.1. Description and physiological characterization Arch. Mikrobiol. 88 299–318

    Article  PubMed  CAS  Google Scholar 

  • Agron, P. G., E. K. Monson, G. S. Ditta, and D. R. Helinski. 1994 Oxygen regulation of expression of nitrogen-fixation genes in Rhizobium meliloti Res. Microbiol. 145 454–459

    Article  PubMed  CAS  Google Scholar 

  • Albracht, S. P. J. 1994 Nickel hydrogenases—in search of the active site Biochim. Biophys. Acta 1188 167–204

    Article  PubMed  Google Scholar 

  • Albracht, S. P. J., and R. Hedderich. 2000 Learning from hydrogenases: Location of a proton pump and of a second FMN in bovine NADH-ubiquinone oxidoreductase (Complex I) FEBS Lett. 485 1–6

    Article  PubMed  CAS  Google Scholar 

  • Albracht, S. P. J. 2001 Spectroscopy—the functional puzzle In: R. Cammack, M. Frey, and R. Robson (Eds.) Hydrogen As a Fuel: Learning from Nature Taylor & Francis London, UK 110–158

    Google Scholar 

  • Alex, L. A., J. N. Reeve, W. H. Orme-Johnson, and C. T. Walsh. 1990 Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum δH Biochemistry 29 7237–7244

    Article  PubMed  CAS  Google Scholar 

  • Anderson, L., and R. C. Fuller. 1967 Photosynthesis in rhodospirillum rubrum. I. Autotrophic carbon dioxide fixation Plant Physiol. 42 487–490

    Article  PubMed  CAS  Google Scholar 

  • Andrews, S. C., B. C. Berks, J. McClay, A. Ambler, M. A. Quail, P. Golby, and J. R. Guest. 1997 A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system Microbiology 143 3633–3647

    Article  PubMed  CAS  Google Scholar 

  • Appel, J., and R. Schulz. 1998 Hydrogen metabolism in organisms with oxygenic photosynthesis: Hydrogenases as important regulatory devices for a proper redox poising? J. Photochem. Photobiol. B 47 1–11

    Article  CAS  Google Scholar 

  • Appel, J., S. Phunpruch, K. Steinmüller, and R. Schulz. 2000 The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis Arch. Microbiol. 173 333–338

    Article  PubMed  CAS  Google Scholar 

  • Aragno, M., and H. G. Schlegel. 1977 Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas Int. J. Syst. Bacteriol. 27 279–281

    Article  Google Scholar 

  • Aragno, M., and H. G. Schlegel. 1978 Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria Int. J. Syst. Bacteriol. 28 112–116

    Article  Google Scholar 

  • Aragno, M., and H. G. Schlegel. 1992 The mesophilic hydrogen-oxidizing (knallgas) bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes Springer-Verlag New York, NY 344–384

    Google Scholar 

  • Aspen, A. J., and M. J. Wolin. 1966 Solubilization and reconstitution of a particulate hydrogenase from Vibrio succinogenes J. Biol. Chem. 241 4152–4156

    PubMed  CAS  Google Scholar 

  • Atta, M., and J. Meyer. 2000 Characterization of the gene encoding the [FeFe]-hydrogenase from Megasphaera elsdenii Biochim. Biophys. Acta 1476 368–371

    Article  PubMed  CAS  Google Scholar 

  • Aubert, C., M. Brugna, A. Dolla, M. Bruschi, and M. T. Giudici-Orticoni. 2000 A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria Biochim. Biophys. Acta 1476 85–92

    Article  PubMed  CAS  Google Scholar 

  • Bader, K. P., and R. Abdel-Basset. 1999 Mass spectrometric analysis of hydrogen photoevolution in the filamentous non-heterocystous cyanobacterium Oscillatoria chalybea In: G. A. Peschek, W. Löffelhardt, and G. Schmetterer (Eds.) The Phototrophic Prokaryotes Kluwer Academic/Plenum Publishers New York, NY 603–609

    Chapter  Google Scholar 

  • Badziong, W., R. K. Thauer, and J. G. Zeikus. 1978 Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source Arch. Microbiol. 116 41–49

    Article  PubMed  CAS  Google Scholar 

  • Bagley, K. A., C. J. Van Garderen, M. Chen, E. C. Duin, S. P. Albracht, and W. H. Woodruff. 1994 Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum Biochemistry 33 9229–9236

    Article  PubMed  CAS  Google Scholar 

  • Bagley, K. A., E. C. Duin, W. Roseboom, S. P. Albracht, and W. H. Woodruff. 1995 Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum Biochemistry 34 5527–5535

    Article  PubMed  CAS  Google Scholar 

  • Bagyinka, C., K. L. Kovács, and E. Rak. 1982 Localization of hydrogenase in Thiocapsa roseopersicina photosynthetic membrane Biochem. J. 202 255–258

    PubMed  CAS  Google Scholar 

  • Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977 Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria Int. J. Syst. Bacteriol. 27 355–361

    Article  CAS  Google Scholar 

  • Bale, S. J., K. Goodman, P. A. Rochelle, J. R. Marchesi, J. C. Fry, A. J. Weightman, and R. J. Parkes. 1997 Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea Int. J. Syst. Bacteriol. 47 515–521

    Article  PubMed  CAS  Google Scholar 

  • Ballantine, S. P., and D. H. Boxer. 1985 Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12 J. Bacteriol. 163 454–459

    PubMed  CAS  Google Scholar 

  • Ballantine, S. P., and D. H. Boxer. 1986 Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli Eur. J. Biochem. 156 277–284

    Article  PubMed  CAS  Google Scholar 

  • Baron, S. F., and J. G. Ferry. 1989a Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum J. Bacteriol. 171 3846–3853

    PubMed  CAS  Google Scholar 

  • Baron, S. F., and J. G. Ferry. 1989b Reconstitution and properties of a coenzyme F420-mediated formate hydrogenlyase system in Methanobacterium formicicum J. Bacteriol. 171 3854–3859

    PubMed  CAS  Google Scholar 

  • Baron, S. F., D. S. Williams, H. D. May, P. S. Patel, H. C. Aldrich, and J. G. Ferry. 1989 Immunogold localization of coenzyme-F420-reducing formate dehydrogenase and coenzyme-F420-reducing hydrogenase in Methanobacterium formicicum Arch. Microbiol. 151 307–313

    Article  CAS  Google Scholar 

  • Bartha, R., and E. J. Ordal. 1965 Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains J. Bacteriol. 89 1015–1019

    PubMed  CAS  Google Scholar 

  • Barton, R. M., and H. J. Worman. 1999 Prenylated prelamin A interacts with Narf, a novel nuclear protein J. Biol. Chem. 274 30008–30018

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, J., M. Reh, and H. G. Schlegel. 1974 Taxanomic studies on some Gram-positive coryneform hydrogen bacteria Arch. Mikrobiol. 100 207–217

    CAS  Google Scholar 

  • Belay, N., R. Sparling, and L. Daniels. 1986 Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus Appl. Environ. Microbiol. 52 1080–1085

    PubMed  CAS  Google Scholar 

  • Ben-Bassat, A., R. Lamed, and J. G. Zeikus. 1981 Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii J. Bacteriol. 146 192–199

    PubMed  CAS  Google Scholar 

  • Berghöfer, Y., K. Agha-Amiri, and A. Klein. 1994 Selenium is involved in the negative regulation of the expression of selenium-free [NiFe] hydrogenases in Methanococcus voltae Molec. Gen. Genet. 242 369–373

    PubMed  Google Scholar 

  • Berkessel, A. 2001 Activation of dihydrogen without transition metals Curr. Opin. Chem. Biol. 5 486–490

    Article  PubMed  CAS  Google Scholar 

  • Berks, B. C. 1996 A common export pathway for proteins binding complex redox cofactors? Molec. Microbiol. 22 393–404

    Article  CAS  Google Scholar 

  • Bernalier, A., A. Willems, M. Leclerc, V. Rochet, and M. D. Collins. 1996 Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces Arch. Microbiol. 166 176–183

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, M., E. Schwartz, J. Rietdorf, and B. Friedrich. 1996 The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling J. Bacteriol. 178 4522–4529

    PubMed  CAS  Google Scholar 

  • Bernhard, M., B. Benelli, A. Hochkoeppler, D. Zannoni, and B. Friedrich. 1997 Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16 Eur. J. Biochem. 248 179–186

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, M., B. Friedrich, and R. A. Siddiqui. 2000 Ralstonia eutropha TF93 is blocked in tat-mediated protein export J. Bacteriol. 182 581–588

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, M., T. Buhrke, B. Bleijlevens, A. L. De Lacey, V. M. Fernandez, S. P. Albracht, and B. Friedrich. 2001 The H2 sensor of Ralstonia eutropha: Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase J. Biol. Chem. 276 15592–15597

    Article  PubMed  CAS  Google Scholar 

  • Bertram, P. A., and R. K. Thauer. 1994 Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum Eur. J. Biochem. 226 811–818

    Article  PubMed  CAS  Google Scholar 

  • Binder, U., T. Maier, and A. Böck. 1996 Nickel incorporation into hydrogenase 3 from Escherichia coli requires the precursor form of the large subunit Arch. Microbiol. 165 69–72

    Article  PubMed  CAS  Google Scholar 

  • Bingemann, R., and A. Klein. 2000 Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae Eur. J. Biochem. 267 6612–6618

    Article  PubMed  CAS  Google Scholar 

  • Black, L. K., C. Fu, and R. J. Maier. 1994 Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression J. Bacteriol. 176 7102–7106

    PubMed  CAS  Google Scholar 

  • Blamey, J. M., S. Mukund, and M. W. W. Adams. 1994 Properties of a thermostable 4Fe-ferredoxin from the hyperthermophilic bacterium Thermotoga maritima FEMS Microbiol. Lett. 121 165–170

    Article  PubMed  CAS  Google Scholar 

  • Blankenship, R. E. 1992 Origin and early evolution of photosynthesis Photosynth. Res. 33 91–111

    Article  PubMed  CAS  Google Scholar 

  • Blattner, F. R., G. Plunkett, III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997 The complete genome sequence of Escherichia coli K-12 Science 277 1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Bleijlevens, B. 2002 Activation and sensing of hydrogen in nature Universiteit van Amsterdam Amsterdam, The Netherlands

    Google Scholar 

  • Blöchl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H. W. Jannasch, and K. O. Stetter. 1997 Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C Extremophiles 1 14–21

    Article  PubMed  Google Scholar 

  • Blokesch, M., A. Paschos, E. Theodoratou, E. Bauer, M. Hube, S. Huth, and A. Böck. 2002 Metal insertion into NiFe-hydrogenases Biochem. Soc. Trans. 30 674–680

    Article  PubMed  CAS  Google Scholar 

  • Blokesch, M., A. Paschos, A. Bauer, S. Reissmann, N. Drapal, et al. 2004 Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE Eur. J. Biochem. 271 3428–3436

    Article  PubMed  CAS  Google Scholar 

  • Blotevogel, K. H., U. Fischer, M. Mocha, and S. Jannsen. 1985 Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen Arch. Microbiol. 142 211–217

    Article  CAS  Google Scholar 

  • Blumentals, I. I., S. H. Brown, R. N. Schicho, A. K. Skaja, H. R. Costantino, and R. M. Kelly. 1990 The hyperthermophilic archaebacterium, Pyrococcus furiosus—development of culturing protocols, perspectives on scaleup, and potential applications Ann. NY Acad. Sci. 589 301–314

    Article  PubMed  CAS  Google Scholar 

  • Bogorov, L. V. 1974 Properties of Thiocapsa roseopersicina strain BBS isolated from estuary of white sea [in Russian] Mikrobiologiya 43 326–332

    CAS  Google Scholar 

  • Bogsch, E. G., F. Sargent, N. R. Stanley, B. C. Berks, C. Robinson, and T. Palmer. 1998 An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria J. Biol. Chem. 273 18003–18006

    Article  PubMed  CAS  Google Scholar 

  • Böhm, R., M. Sauter, and A. Böck. 1990 Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components Molec. Microbiol. 4 231–243

    Article  Google Scholar 

  • Boison, G., O. Schmitz, L. Mikheeva, S. Shestakov, and H. Bothe. 1996 Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans FEBS Lett. 394 153–158

    Article  PubMed  CAS  Google Scholar 

  • Bomar, M., H. Hippe, and B. Schink. 1991 Lithotrophic growth and hydrogen metabolism by Clostridium magnum FEMS Microbiol. Lett. 67 347–349

    Article  PubMed  CAS  Google Scholar 

  • Bone, D. H. 1960 Localization of hydrogen-activating enzymes in Pseudomonas saccharophila Biochem. Biophys. Res. Commun. 3 211–214

    Article  PubMed  CAS  Google Scholar 

  • Bone, D. H., S. Bernstein, and W. Vishniac. 1963 Purification and some properties of different forms of hydrogen dehydrogenase Biochim. Biophys. Acta 67 581–588

    Article  PubMed  CAS  Google Scholar 

  • Bonjour, F., and M. Aragno. 1984 Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing sporeformer from a geothermal area Arch. Microbiol. 139 397–401

    Article  CAS  Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980 Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems Appl. Environ. Microbiol. 40 626–632

    PubMed  CAS  Google Scholar 

  • Bothe, H., J. Tennigkeit, and G. Eisbrenner. 1977 Utilization of molecular hydrogen by blue-green alga Anabaena cylindrica Arch. Microbiol. 114 43–49

    Article  PubMed  CAS  Google Scholar 

  • Brandis, A., and R. K. Thauer. 1981 Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source J. Gen. Microbiol. 126 249–252

    CAS  Google Scholar 

  • Braun, K., and G. Gottschalk. 1981 Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum Arch. Microbiol. 128 294–298

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981 Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide Arch. Microbiol. 128 288–293

    Article  PubMed  CAS  Google Scholar 

  • Brewin, N. J. 1984 Hydrogenase and energy efficiency in nitrogen-fixing symbionts In: D. P. S. Verma and T. Hohn (Eds.) Genes Involved in Plant-Microbe Interactions Springer-Verlag New York, NY 179–203

    Chapter  Google Scholar 

  • Breznak, J. A. 1982 Intestinal microbiota of termites and other xylophagous insects Ann. Rev. Microbiol. 36 323–343

    Article  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H. J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288

    Article  CAS  Google Scholar 

  • Brito, B., M. Martinez, D. Fernandez, L. Rey, E. Cabrera, J. M. Palacios, J. Imperial, and T. Ruiz-Argueso. 1997 Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein nifA Proc. Natl. Acad. Sci. USA 94 6019–6024

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D., K. M. Brock, R. T. Belly, and R. L. Weiss. 1972 Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature Arch. Mikrobiol. 84 54–68

    Article  PubMed  CAS  Google Scholar 

  • Bronder, M., H. Mell, E. Stupperich, and A. Kröger. 1982 Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source Arch. Microbiol. 131 216–223

    Article  PubMed  CAS  Google Scholar 

  • Brøndsted, L., and T. Atlung. 1994 Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli J. Bacteriol. 176 5423–5428

    PubMed  Google Scholar 

  • Brøndsted, L., and T. Atlung. 1996 Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli J. Bacteriol. 178 1556–1564

    PubMed  Google Scholar 

  • Brugna, M., W. Nitschke, R. Toci, M. Bruschi, and M. T. Giudici-Orticoni. 1999 First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans J. Bacteriol. 181 5505–5508

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977 Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria Appl. Environ. Microbiol. 33 1162–1169

    PubMed  CAS  Google Scholar 

  • Bryant, F. O., and M. W. Adams. 1989 Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus J. Biol. Chem. 264 5070–5079

    PubMed  CAS  Google Scholar 

  • Brysch, K., C. Schneider, G. Fuchs, and F. Widdel. 1987 Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov Arch. Microbiol. 148 264–274

    Article  CAS  Google Scholar 

  • Buhrke, T., and B. Friedrich. 1998 hoxX (hypX) is a functional member of the Alcaligenes eutrophus hyp gene cluster Arch. Microbiol. 170 460–463

    Article  PubMed  CAS  Google Scholar 

  • Buhrke, T., B. Bleijlevens, S. P. J. Albracht, and B. Friedrich. 2001 Involvement of hyp gene products in maturation of the H2-sensing [NiFe] hydrogenase of Ralstonia eutropha J. Bacteriol. 183 7087–7093

    Article  PubMed  CAS  Google Scholar 

  • Buhrke, T. 2002 Der H2-Sensor von Ralstonia eitropha: Struktur-Funktions-Beziehungen einer neuartigen [NiFe]-Hydrogenase Ph D thesis Humboldt-Universität zu Berlin Berlin, Germany

    Google Scholar 

  • Bui, E. T., and P. J. Johnson. 1996 Identification and characterization of [FeFe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis Molec. Biochem. Parasitol. 76 305–310

    Article  CAS  Google Scholar 

  • Bulen, W. A., R. C. Burns, and J. R. Le Comte. 1965a Nitrogen fixation—hydrosulfite as electron donor with cell-free preparations of azotobacter vinelandii and rhodospirillum rubrum Proc. Natl. Acad. Sci. USA 53 532–539

    Article  PubMed  CAS  Google Scholar 

  • Bulen, W. A., J. R. Le Comte, R. C. Burns, and J. Hinkson. 1965b In: A. San Pietro (Ed.) Non-heme Iron Proteins: Role in Energy Conversion Antioch Press Yellow Springs, OH 261–287

    Google Scholar 

  • Bult, C. J., O. White, G. J. Olsen, L. X. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, D. Nguyen, T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H. P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1996 Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii Science 273 1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Burgdorf, T., A. L. DeLacey, and B. Friedrich. 2002 Funcional analysis by site-directed mutagenesis of the NAD+-reducing hydrogenase from Ralstonia eutropha J. Bacteriol. 184 6280–6288

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., H. Fricke, A. Neuner, J. Kristjansson, P. Rouvier, L. Mandelco, C. R. Woese, and K. O. Stetter. 1990a Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system Syst. Appl. Microbiol. 13 263–269

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., H. W. Jannasch, B. Nicolaus, and K. O. Stetter. 1990b Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria Syst. Appl. Microbiol. 13 24–28

    Article  Google Scholar 

  • Buurman, G., S. Shima, and R. K. Thauer. 2000 The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor FEBS Lett. 485 200–204

    Article  PubMed  CAS  Google Scholar 

  • Caccavo, F. Jr, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994 Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism Appl. Environ. Microbiol. 60 3752–3759

    PubMed  CAS  Google Scholar 

  • Cammack, R., D. S. Patil, R. Aguirre, and E. C. Hatchikian. 1982 Redox properties of the ESR-detectable nickel in hydrogenase from Desulfovibrio gigas FEBS Lett. 142 289–292

    Article  CAS  Google Scholar 

  • Cammack, R. 2001 The catalytic machinery In: R. Cammack, M. Frey, and R. Robson (Eds.) Hydrogen As a Fuel: Learning from Nature Taylor & Francis London, UK 159–180

    Chapter  Google Scholar 

  • Carrasco, C. D., J. A. Buettner, and J. W. Golden. 1995 Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts Proc. Natl. Acad. Sci. USA 92 791–795

    Article  PubMed  CAS  Google Scholar 

  • Casalot, L., and M. Rousset. 2001 Maturation of the [NiFe] hydrogenases Trends Microbiol. 9 228–237

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. S., and L. E. Mortenson. 1974 Purification and properties of hydrogenase from Clostridium pasteurianum W5 Biochim. Biophys. Acta 371 283–298

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. S., and D. K. Blanchard. 1978 Isolation and properties of a unidirectional H2-oxidizing hydrogenase from the strictly anaerobic N2-fixing bacterium Clostridium pasteurianum W5 Biochem. Biophys. Res. Commun. 84 1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. P., and D. C. Yoch. 1987 Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b J. Bacteriol. 169 4778–4783

    PubMed  CAS  Google Scholar 

  • Clark, J. E., S. W. Ragsdale, L. G. Ljungdahl, and J. Wiegel. 1982 Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum J. Bacteriol. 151 507–509

    PubMed  CAS  Google Scholar 

  • Coates, J. D., V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, and D. R. Lovley. 2001 Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers Int. J. Syst. Evol. Microbiol. 51 581–588

    PubMed  CAS  Google Scholar 

  • Colbeau, A., J. Chabert, and P. M. Vignais. 1983 Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata Biochim. Biophys. Acta. 748 116–127

    Article  CAS  Google Scholar 

  • Colbeau, A., and P. M. Vignais. 1992 Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: stimulation by H2 J. Bacteriol. 174 4258–4264

    PubMed  CAS  Google Scholar 

  • Colbeau, A., K. L. Kovács, J. Chabert, and P. M. Vignais. 1994 Cloning and sequence of the structural (hupSLC) and accessory (hupDHI) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina Gene 140 25–31

    Article  PubMed  CAS  Google Scholar 

  • Colbeau, A., S. Elsen, M. Tomiyama, N. A. Zorin, B. Dimon, and P. M. Vignais. 1998 Rhodobacter capsulatus HypF is involved in regulation of hydrogenase synthesis through the HupUV proteins Eur. J. Biochem. 251 65–71

    Article  PubMed  CAS  Google Scholar 

  • Conrad, R., and W. Seiler. 1979 Role of hydrogen bacteria during the decomposition of hydrogen by soil FEMS Microbiol. Lett. 6 143–145

    Article  CAS  Google Scholar 

  • Conrad, R., and W. Seiler. 1981 Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes Soil Biol. Biochem. 13 43–49

    Article  CAS  Google Scholar 

  • Conrad, R., M. Aragno, and W. Seiler. 1983a Production and consumption of hydrogen in a eutrophic lake Appl. Environ. Microbiol. 45 502–510

    PubMed  CAS  Google Scholar 

  • Conrad, R., M. Aragno, and W. Seiler. 1983b The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen FEMS Microbiol. Lett. 18 207–210

    Article  CAS  Google Scholar 

  • Conrad, R. 1984 Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, CH4) In: M. J. Klug and C. A. Reddy (Eds.) Current Perspectives in Microbial Ecology American Society for Microbiology Washington, DC 461–467

    Google Scholar 

  • Conrad, R., and W. Seiler. 1985 Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere. Field studies in subtropical regions J. Geophys. Res. 90 5699–6709

    Article  CAS  Google Scholar 

  • Conrad, R., T. J. Phelps, and J. G. Zeikus. 1985 Gas metabolism evidence in support of juxtapositioning between hydrogen producing and methanogenic bacteria in sewage sludge and lake sediments Appl. Environ. Microbiol. 50 595–601

    PubMed  CAS  Google Scholar 

  • Conrad, R., B. Schink, and T. J. Phelps. 1986 Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in-situ conditions FEMS Microbiol. Ecol. 38 353–360

    Article  CAS  Google Scholar 

  • Conrad, R., F. S. Lupton, and J. G. Zeikus. 1987 Hydrogen metabolism and sulfate-dependent inhibition of methanogenesis in eutrophic lake sediment(Lake Mendota) FEMS Microbiol. Ecol. 45 107–115

    Article  CAS  Google Scholar 

  • Conrad, R. 1988 Biogeochemistry and ecophysiology of atmospheric CO and H2 Adv. Microb. Ecol. 10 231–283

    Article  CAS  Google Scholar 

  • Conrad, R. 1996 Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) Microbiol. Rev. 60 609–640

    PubMed  CAS  Google Scholar 

  • Conrad, R. 1999 Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments FEMS Microbiol. Ecol. 28 193–202

    Article  CAS  Google Scholar 

  • Coppi, M. V., R. A. O’Neil, and D. R. Lovley. 2004 Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens J. Bacteriol. 186 3022–3028

    Article  PubMed  CAS  Google Scholar 

  • Csáki, R., T. Hanczár, L. Bodrossy, J. C. Murrell, and K. L. Kovács. 1999 Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath) FEMS Microbiol. Lett. 205 203–207

    Article  Google Scholar 

  • Cypionka, H., and W. Dilling. 1986 Intracellular localization of the hydrogenase in Desulfotomaculum orientis FEMS Microbiol. Lett. 36 257–260

    Article  CAS  Google Scholar 

  • Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990 Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui J. Bacteriol. 172 4464–4471

    PubMed  CAS  Google Scholar 

  • Daumas, S., R. Cord-Ruwisch, and J. L. Garcia. 1988 Desulfotomaculumgeothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water Ant. v. Leeuwenhoek 54 165–178

    Article  CAS  Google Scholar 

  • Davis, D. H., R. Y. Stanier, M. Doudoroff, and M. Mandel. 1970 Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species Arch. Mikrobiol. 70 1–13

    Article  PubMed  CAS  Google Scholar 

  • Deckert, G., P. V. Warren, T. Gaasterland, W. G. Young, A. L. Lenox, D. E. Graham, R. Overbeek, M. A. Snead, M. Keller, M. Aujay, R. Huber, R. A. Feldman, J. M. Short, G. J. Olsen, and R. V. Swanson. 1998 The complete genome of the hyperthermophilic bacterium Aquifex aeolicus Nature 392 353–358

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, B. Schmidt, and G. Gottschalk. 1992 Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Gö1 Arch. Microbiol. 157 505–511

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U. 1995 Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1 Arch. Microbiol. 164 370–376

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, S. Lentes, C. Herzberg, and G. Gottschalk. 1995 Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b Eur. J. Biochem. 227 261–269

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., T. Lienard, and G. Gottschalk. 1999 Novel reactions involved in energy conservation by methanogenic archaea FEBS Lett. 457 291–297

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., A. Johann, T. Hartsch, R. Merkl, R. A. Schmitz, R. Martinez-Arias, A. Henne, A. Wiezer, S. Bäumer, C. Jacobi, H. Brüggemann, T. Lienard, A. Christmann, M. Bömeke, S. Steckel, A. Bhattacharyya, A. Lykidis, R. Overbeek, H. P. Klenk, R. P. Gunsalus, H. J. Fritz, and G. Gottschalk. 2002 The genome of Methanosarcina mazei: Evidence for lateral gene transfer between bacteria and archaea J. Molec. Microbiol. Biotechnol. 4 453–461

    CAS  Google Scholar 

  • Dernedde, J., M. Eitinger, and B. Friedrich. 1993 Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16 Arch. Microbiol. 159 545–553

    Article  PubMed  CAS  Google Scholar 

  • Dernedde, J., T. Eitinger, N. Patenge, and B. Friedrich. 1996 hyp gene products in Alcaligenes eutrophus are part of a hydrogenase maturation system Eur. J. Biochem. 235 351–358

    Article  PubMed  CAS  Google Scholar 

  • DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Suflita. 1990 Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium Arch. Microbiol. 154 23–30

    Article  CAS  Google Scholar 

  • Dischert, W., P. M. Vignais, and A. Colbeau. 1999 The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system Molec. Microbiol. 34 995–1006

    Article  CAS  Google Scholar 

  • Dixon, R. O. 1968 Hydrogenase in pea root nodule bacterioids Arch. Mikrobiol. 62 272–283

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt, U., and M. Blaut. 1996 Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport Arch. Microbiol. 165 141–147

    Article  PubMed  CAS  Google Scholar 

  • Drake, H. L. 1982 Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum J. Bacteriol. 150 702–709

    PubMed  CAS  Google Scholar 

  • Drake, H. L. 1994 Acetogenesis, acetogenic bacteria and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 3–62

    Chapter  Google Scholar 

  • Drews, J., and J. F. Imhoff. 1991 Phototrophic purple bacteria In: J. M. Shively and L. L. Barton (Eds.) Variations in Autotrophic Life Academic Press London, UK 51–97

    Google Scholar 

  • Drobner, E., H. Huber, and K. O. Stetter. 1990 Thiobacillus ferrooxidans, a facultative hydrogen oxidizer Appl. Environ. Microbiol. 56 2922–2923

    PubMed  CAS  Google Scholar 

  • Drobner, E., H. Huber, R. Rachel, and K. O. Stetter. 1992 Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer Arch. Microbiol. 157 213–217

    Article  PubMed  CAS  Google Scholar 

  • Dross, F., V. Geisler, R. Lenger, F. Theis, T. Krafft, F. Fahrenholz, E. Kojro, A. DuchÊne, D. Tripier, K. Juvenal, and A. Kröger. 1992 The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes Eur. J. Biochem. 206 93–102

    Article  PubMed  CAS  Google Scholar 

  • Dross, F., V. Geisler, R. Lenger, F. Theis, T. Krafft, F. Fahrenholz, E. Kojro, A. DuchÊne, D. Tripier, K. Juvenal, and A. Kröger. 1993 The quinone-reactive Ni/Fe-hydrogenase of Wolinella Succinogenes Eur. J. Biochem. 214 949–950

    PubMed  CAS  Google Scholar 

  • Duchow, A., and H. C. Douglas. 1949 Rhodomicrobium vannielii, a new photoheterotrophic bacterium J. Bacteriol. 58 409–416

    PubMed  CAS  Google Scholar 

  • Durmowicz, M. C., and R. J. Maier. 1997 Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum J. Bacteriol. 179 3676–3682

    PubMed  CAS  Google Scholar 

  • Eberhardt, U. 1966 über das Wasserstoff aktivierende System von Hydrogenomonas H 16. I. Verteilung der Hydrogenase-Aktivität auf zwei Zellfraktionen [On the hydrogen-activating system of Hydrogenomonas H 16. I: Distribution of the hydrogenase activity between two cellular fractions] Arch. Mikrobiol. 53 288–302

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt, U. 1969 On chemolithotrophy and hydrogenase of a Gram-positive knallgas bacterium Arch. Mikrobiol. 66 91–104

    Article  PubMed  CAS  Google Scholar 

  • Eberz, G., C. Hogrefe, C. Kortluke, A. Kamienski, and B. Friedrich. 1986 Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus H16 J. Bacteriol. 168 636–641

    PubMed  CAS  Google Scholar 

  • Eberz, G., and B. Friedrich. 1991 Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus J. Bacteriol. 173 1845–54

    PubMed  CAS  Google Scholar 

  • Edwards, M. R. 1998 From a soup or a seed? Trends Ecol. Evol. 13 178–181

    Article  PubMed  CAS  Google Scholar 

  • Eichler, B. and B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 147–152

    Article  CAS  Google Scholar 

  • Eisenmann, E., J. Beuerle, K. Sulger, P. M. H. Kroneck, and W. Schumacher. 1995 Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia Arch. Microbiol. 164 180–185

    Article  CAS  Google Scholar 

  • Elsden, S. R., B. E. Volcani, F. M. C., Gilchrist, and D. Lewis. 1956 Properties of a fatty acid forming organism isolated from the rumen of sheep J. Bacteriol. 72 681–689

    PubMed  CAS  Google Scholar 

  • Elsen, S., P. Richaud, A. Colbeau, and P. M. Vignais. 1993 Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus J. Bacteriol. 175 7404–7412

    PubMed  CAS  Google Scholar 

  • Elsen, S., A. Colbeau, J. Chabert, and P. M. Vignais. 1996 The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus J. Bacteriol. 178 5174–5181

    PubMed  CAS  Google Scholar 

  • Elsen, S., W. Dischert, A. Colbeau, and C. E. Bauer. 2000 Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system J. Bacteriol. 182 2831–2837

    Article  PubMed  CAS  Google Scholar 

  • Emerich, D. W., T. Ruiz-Argueso, T. M. Ching, and H. J. Evans. 1979 Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids J. Bacteriol. 137 153–160

    PubMed  CAS  Google Scholar 

  • Erauso, G., A. L. Reysenbach, A. Godfroy, J. R. 6Meunier, B. Crump, F. Partensky, J. A. Baross, V. Marteinsson, G. Barbier, N. R. Pace, and D. Prieur. 1993 Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent Arch. Microbiol. 160 338–349

    Article  CAS  Google Scholar 

  • Evans, H. J., A. R. Harker, H. Papen, S. A. Russell, F. J. Hanus, and M. Zuber. 1987 Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia Ann. Rev. Microbiol. 41 335–361

    Article  CAS  Google Scholar 

  • Ewart, G. D., and G. D. Smith. 1989 Purification and properties of soluble hydrogenase from the cyanobacterium Anabaena cylindrica Arch. Biochem. Biophys. 268 327–337

    Article  PubMed  CAS  Google Scholar 

  • Fallon, R. D. 1982 Influences of pH, temperature, and moisture on gaseous tritium uptake in surface soils Appl. Environ. Microbiol. 44 171–178

    PubMed  CAS  Google Scholar 

  • Fauque, G., M. Teixeira, I. Moura, P. A. Lespinat, A. V. Xavier, D. V. Dervartanian, H. D. Peck, J. Le Gall, and J. G. Moura. 1984 Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800) Eur. J. Biochem. 142 21–28

    Article  PubMed  CAS  Google Scholar 

  • Fauque, G., H. D. Jr Peck, J. J. Moura, B. H. Huynh, Y. Berlier, D. V. DerVartanian, M. Teixeira, A. E. Przybyla, P. A. Lespinat, I. Moura, and J. Le Gall. 1988 The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio FEMS Microbiol. Rev. 4 299–344

    PubMed  CAS  Google Scholar 

  • Fay, P. 1992 Oxygen relations of nitrogen fixation in cyanobacteria Microbiol. Rev. 56 340–373

    PubMed  CAS  Google Scholar 

  • Fernandez, V. M., E. C. Hatchikian, and R. Cammack. 1985 Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase Biochim. Biophys. Acta 832 69–79

    Article  CAS  Google Scholar 

  • Ferry, J. G., P. H. Smith, and R. S. Wolfe. 1974 Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei Int. J. Syst. Bacteriol. 24 465–469

    Article  CAS  Google Scholar 

  • Fiala, G., and K. O. Stetter. 1986 Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100C Arch. Microbiol. 145 56–61

    Article  CAS  Google Scholar 

  • Fiebig, K., and B. Friedrich. 1989 Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro) Eur. J. Biochem. 184 79–88

    Article  PubMed  CAS  Google Scholar 

  • Filipiak, M., W. R. Hagen, and C. Veeger. 1989 Hydrodynamic, structural and magnetic properties of Megasphaera elsdenii Fe hydrogenase reinvestigated Eur. J. Biochem. 185 547–553

    Article  PubMed  CAS  Google Scholar 

  • Fischer, F., W. Zillig, K. O. Stetter, and G. Schreiber. 1983 Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria Nature 301 511–513

    Article  PubMed  CAS  Google Scholar 

  • Fischer, J., A. Quentmeier, S. Kostka, R. Kraft, and C. G. Friedrich. 1996 Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans Arch. Microbiol. 165 289–296

    Article  PubMed  CAS  Google Scholar 

  • Flint, H. J. 1997 The rumen microbial ecosystem—some recent developments Trends Microbiol. 5 483–488

    Article  PubMed  CAS  Google Scholar 

  • Florin, L., A. Tsokoglou, and T. Happe. 2001 A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain J. Biol. Chem. 276 6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942 A new type of glucose fermentation by Clostridium thermoaceticum J. Bacteriol. 43 701–715

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps, J. C. 1996 The active site of Ni-Fe hydrogenases: Model chemistry and crystallographic results J. Biol. Inorg. Chem. 1 91–98

    Article  CAS  Google Scholar 

  • Fontecilla-Camps, J. C., M. Frey, E. Garcin, Y. Higuchi, Y. Montet, Y. Nicolet, and A. Volbeda. 2001 Molecular architectures In: R. Cammack, M. Frey, and R. Robson (Eds.) Hydrogen As a Fuel: Learning from Nature Taylor & Francis London, UK 93–109

    Google Scholar 

  • Ford, C. M., N. Garg, R. P. Garg, K. H. Tibelius, M. G. Yates, D. J. Arp, and L. C. Seefeldt. 1990 The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum Molec. Microbiol. 4 999–1008

    Article  CAS  Google Scholar 

  • Fox, J. A., D. J. Livingston, W. H. Orme-Johnson, and C. T. Walsh. 1987 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1: Purification and characterization Biochemistry 26 4219–4227

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. D., Y. He, D. Shelver, G. P. Roberts, and P. W. Ludden. 1996a Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum J. Bacteriol. 178 6200–6208

    PubMed  CAS  Google Scholar 

  • Fox, J. D., R. L. Kerby, G. P. Roberts, and P. W. Ludden. 1996b Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme J. Bacteriol. 178 1515–1524

    PubMed  CAS  Google Scholar 

  • Franzmann, P. D., Y. Liu, D. L. Balkwill, H. C. Aldrich, E. Conway de Macario, and D. R. Boone. 1997 Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica Int. J. Syst. Bacteriol. 47 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Frey, M. 1998 Nickel-iron hydrogenases: structural and functional properties Struct. Bonding 90 97–126

    Article  Google Scholar 

  • Frey, M., J. C. Fontecilla-Camps, and A. Volbeda. 2000 Nickel-iron hydrogenases In: A. Messerschmidt, R. Huber, T. Poulos and K. Wieghardt (Eds.) Handbook of Metalloproteins John Wiley Chichester, UK 880–896

    Google Scholar 

  • Friedrich, C. G., B. Friedrich, and B. Bowien. 1981a Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus J. Gen. Microbiol. 122 69–78

    CAS  Google Scholar 

  • Friedrich, B., E. Heine, A. Finck, and C. G. Friedrich. 1981b Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus J. Bacteriol. 145 1144–1149

    PubMed  CAS  Google Scholar 

  • Friedrich, C. G. 1982 Derepression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus J. Bacteriol. 149 203–210

    PubMed  CAS  Google Scholar 

  • Friedrich, B., and E. Schwartz. 1993 Molecular biology of hydrogen utilization in aerobic chemolithotrophs Ann. Rev. Microbiol. 47 351–383

    Article  CAS  Google Scholar 

  • Friedrich, B., M. Bernhard, J. Dernedde, T. Eitinger, O. Lenz, C. Massanz, and E. Schwartz. 1996 Hydrogen oxidation by Alcaligenes In: M. E. Lidstrom and F. R. Tabita (Eds.) Microbial Growth on C1 Compounds Kluwer Academic Publishers Dordrecht, The Netherlands 110–117

    Chapter  Google Scholar 

  • Friedrich, T., B. Brors, P. Hellwig, L. Kintscher, T. Rasmussen, D. Scheide, U. Schulte, W. Mantele, and H. Weiss. 2000 Characterization of two novel redox groups in the respiratory NADH:ubiquinone oxidoreductase (complex I) Biochim. Biophys. Acta 1459 305–309

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, B., P. Vignais, O. Lenz, and A. Colbeau. 2001 Regulation of hydrogenase gene expression In: R. Cammack, M. Frey, and R. Robson (Eds.) Hydrogen As a Fuel. Learning from Nature Taylor & Francis London, UK 33–56

    Google Scholar 

  • Fritsche, E., A. Paschos, H. G. Beisel, A. Böck, and R. Huber. 1999 Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli J. Molec. Biol. 288 989–998

    Article  PubMed  CAS  Google Scholar 

  • Fu, C., J. W. Olson, and R. J. Maier. 1995 HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer Proc. Natl. Acad. Sci. USA 92 2333–2337

    Article  PubMed  CAS  Google Scholar 

  • Gadkari, D., K. Schricker, G. Acker, R. M. Kroppenstedt, and O. Meyer. 1990 Streptomyces thermoautotrophicus sp. nov., a thermophilic CO-oxidizing and H2-oxidizing obligate chemolithoautotroph Appl. Environ. Microbiol. 56 3727–3734

    PubMed  CAS  Google Scholar 

  • Gaffron, H. 1935 über den Stoffwechsel der Purpurbakterien. II [On the metabolism of the purple bacteria. II] Biochem. Z. 275 301

    CAS  Google Scholar 

  • Garcin, E., X. Vernede, E. C. Hatchikian, A. Volbeda, M. Frey, and J. C. Fontecilla-Camps. 1999 The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center Struct. Fold. Des. 7 557–566

    Article  CAS  Google Scholar 

  • Genthner, B. R. S., S. D. Friedman, and R. Devereux. 1997 Reclassification of Desulfovibrio desulfuricans Norway 4 as Desulfomicrobium norvegicum comb nov and confirmation of Desulfomicrobium escambiense (corrig, formerly “escambium”) as a new species in the genus Desulfomicrobium Int. J. Syst. Bacteriol. 47 889–892

    Article  CAS  Google Scholar 

  • Gest, H., and M. D. Kamen. 1949a Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria J. Bacteriol. 58 239–245

    CAS  Google Scholar 

  • Gest, H., and M. D. Kamen. 1949b Photoproduction of molecular hydrogen by Rhodospirillum rubrum Science 109 558–559

    Article  PubMed  CAS  Google Scholar 

  • Gest, H. 1951 Enzymatic oxidation of molecular hydrogen by bacterial extracts Fed. Proc. 10 188

    Google Scholar 

  • Gest, H. 1954 Oxidation and evolution of molecular hydrogen by microorganisms Bacteriol. Rev. 18 43–73

    PubMed  CAS  Google Scholar 

  • Gitlitz, P. H., and A. I. Krasna. 1975 Structural and catalytic properties of hydrogenase from Chromatium Biochemistry 14 2561–2568

    Article  PubMed  CAS  Google Scholar 

  • Gogotov, I. N. 1968 Hydrogen excretion and carbon assimilation by purple bacteria in relation to light intensity [in Russian] Dokl. Akad. Nauk SSSR 183 954–956

    PubMed  CAS  Google Scholar 

  • Gogotov, I. N., N. A. Zorin, and L. V. Bogorov. 1974 Metabolism of Hydrogen and nitrogen fixation capacity of thiocapsa roseopersicina [in Russian] Mikrobiologiya 43 5–10

    CAS  Google Scholar 

  • Gogotov, I. N., N. A. Zorin, and E. N. Kondratieva. 1976 Purification and properties of hydrogenase from phototrophic bacterium Thiocapsa roseopersicina [in Russian] Biokhimiya 41 836–842

    CAS  Google Scholar 

  • Gogotov, I. N. 1984 Hydrogenases of purple bacteria: properties and regulation of synthesis Arch. Microbiol. 140 86–90

    Article  CAS  Google Scholar 

  • Goodman, T. G., and P. S. Hoffman. 1983 Hydrogenase activity in catalase-positive strains of Campylobacter spp J. Clin. Microbiol. 18 825–829

    PubMed  CAS  Google Scholar 

  • Gorrell, T. E., and R. L. Uffen. 1977 Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness J. Bacteriol. 131 533–543

    PubMed  CAS  Google Scholar 

  • Gorrell, T. E., and R. L. Uffen. 1978 Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C J. Bacteriol. 134 830–836

    PubMed  CAS  Google Scholar 

  • Gorwa, M. F., C. Croux, and P. Soucaille. 1996 Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824 J. Bacteriol. 178 2668–2675

    PubMed  CAS  Google Scholar 

  • Gössner, A. S., R. Devereux, N. Ohnemuller, G. Acker, E. Stackebrandt, and H. L. Drake. 1999 Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica Appl. Environ. Microbiol. 65 5124–5133

    PubMed  Google Scholar 

  • Graf, E. G., and R. K. Thauer. 1981 Hydrogenase from Methanobacterium thermoautotrophicum FEBS Lett. 136 165–169

    Article  CAS  Google Scholar 

  • Gray, C. T., and H. Gest. 1965 Biological formation of molecular hydrogen Science 148 186–192

    Article  PubMed  CAS  Google Scholar 

  • Gross, R., J. Simon, F. Theis, and A. Kröger. 1998 Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration Arch. Microbiol. 170 50–58

    Article  PubMed  CAS  Google Scholar 

  • Gross, R., J. Simon, and A. Kröger. 1999 The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes Arch. Microbiol. 172 227–232

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik, C., M. Lubbers, M. Reh, and H. G. Schlegel. 1997a Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11 Microbiology 143 1271–1286

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik, C., K. Ross, K. Schneider, M. Reh, and H. G. Schlegel. 1997b Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some Alcaligenes strains and Rhodococcus opacus MR22 Arch. Microbiol. 167 172–176

    Article  CAS  Google Scholar 

  • Gutierrez, D., Y. Hernando, J. M. Palacios, J. Imperial, and T. Ruiz-Argueso. 1997 FnrN controls symbiotic nitrogen fixation and hydrogenase activities in Rhizobium leguminosarum biovar viciae UPM791 J. Bacteriol. 179 5264–5270

    PubMed  CAS  Google Scholar 

  • Guyoneaud, R., R. Matheron, W. Liesack, J. F. Imhoff, and P. Caumette. 1997 Thiorhodococcus minus, gen. nov., sp. nov., A new purple sulfur bacterium isolated from coastal lagoon sediments Arch Microbiol. 168 16–23

    Article  PubMed  CAS  Google Scholar 

  • Halboth, S., and A. Klein. 1992 Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types Molec. Gen. Genet. 233 217–224

    Article  PubMed  CAS  Google Scholar 

  • Hanczár, T., R. Csáki, L. Bodrossy, J. C. Murrell, and K. L. Kovács. 2002 Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism Arch. Microbiol. 177 167–172

    Article  PubMed  CAS  Google Scholar 

  • Hanus, F. J., R. J. Maier, and H. J. Evans. 1979 Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas Proc. Natl. Acad. Sci. USA 76 1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Happe, T., and J. D. Naber. 1993 Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii Eur. J. Biochem. 214 475–481

    Article  PubMed  CAS  Google Scholar 

  • Happe, T., B. Mosler, and J. D. Naber. 1994 Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii Eur. J. Biochem. 222 769–774

    Article  PubMed  CAS  Google Scholar 

  • Happe, R. P., W. Roseboom, A. J. Pierik, S. P. Albracht, and K. A. Bagley. 1997 Biological activation of hydrogen Nature 385 126

    Article  PubMed  CAS  Google Scholar 

  • Happe, R. P., W. Roseboom, G. Egert, C. G. Friedrich, C. Massanz, B. Friedrich, and S. P. Albracht. 2000 Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha FEBS Lett. 466 259–263

    Article  PubMed  CAS  Google Scholar 

  • Häring, V., H. D. Klüber, and R. Conrad. 1994 Localization of atmospheric H2-oxidizing soil hydrogenases in different particle fractions of soil Biol. Fertil. Soils 18 109–114

    Article  Google Scholar 

  • Harker, A. R., L. S. Xu, F. J. Hanus, and H. J. Evans. 1984 Some properties of the nickel-containing hydrogenase of chemolithotrophically grown Rhizobium japonicum J. Bacteriol. 159 850–856

    PubMed  CAS  Google Scholar 

  • Harmsen, H. J., K. M. Kengen, A. D. Akkermans, and A. J. Stams. 1995 Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures Syst. Appl. Microbiol. 18 67–73

    Article  CAS  Google Scholar 

  • Haselkorn, R., and W. J. Buikema. 1992 Nitrogen fixation in cyanobacteria In: G. Stacey, R. H. Burris, and H. J. Evans (Eds.) Biological Nitrogen Fixation Chapman and Hall London, UK 166–190

    Google Scholar 

  • Hatchikian, E. C., M. Chaigneau, and J. Le Gall. 1976 Analysis of gas production by growing cultures of three species of sulfate-reducing bacteria In: H. G. Schlegel, G. Gottschalk, and N. Pfennig (Eds.) Microbial Production and Utilization of Gases E. Goltze Göttingen, Germany 109–118

    Google Scholar 

  • Hatchikian, E. C., M. Bruschi, and J. Le Gall. 1978 Characterization of the periplasmic hydrogenase from Desulfovibrio gigas Biochem. Biophys. Res. Commun. 82 451–461

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian, E. C., V. Magro, N. Forget, Y. Nicolet, and J. C. Fontecilla-Camps. 1999 Carboxy-terminal processing of the large subunit of [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757 J. Bacteriol. 181 2947–2952

    PubMed  CAS  Google Scholar 

  • Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000 Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium Int. J. Syst. Evol. Microbiol. 50 1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, N. R., T. Ishida, A. Yokota, T. Kodama, and Y. Igarashi. 1999 Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium Int. J. Syst. Bacteriol. 49 783–786

    Article  PubMed  Google Scholar 

  • Hayes, J. M. 1983 Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis In: J. W. Schopf (Ed.) Earth’s Earliest Biosphere: Its Origin and Evolution Princeton University Press Princeton, NJ 291–301

    Google Scholar 

  • He, S. H., M. Teixeira, J. LeGall, D. S. Patil, I. Moura, J. J. Moura, D. V. DerVartanian, B. H. Huynh, and H. D. Peck, Jr. 1989 EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus: Evidence for a selenium ligand to the active site nickel J. Biol. Chem. 264 2678–2682

    PubMed  CAS  Google Scholar 

  • Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller, and K. O. Stetter. 1999 Anaerobic respiration with elemental sulfur and with disulfides FEMS Microbiol. Rev. 22 353–381

    Article  Google Scholar 

  • Hennecke, H. 1990 Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis FEBS Lett. 268 422–426

    Article  PubMed  CAS  Google Scholar 

  • Hernando, Y., J. M. Palacios, J. Imperial, and T. Ruiz-Argueso. 1995 The hypBFCDE operon from Rhizobium leguminosarum biovar viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene J. Bacteriol. 177 5661–5669

    PubMed  CAS  Google Scholar 

  • Hernando, Y., J. Palacios, J. Imperial, and T. Ruiz-Argueso. 1998 Rhizobium leguminosarum bv. viciae hypA gene is specifically expressed in pea (Pisum sativum) bacteroids and required for hydrogenase activity and processing FEMS Microbiol. Lett. 169 295–302

    Article  PubMed  CAS  Google Scholar 

  • Heyer, H., L. Stal, and W. E. Krumbein. 1989 Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark Arch. Microbiol. 151 558–564

    Article  CAS  Google Scholar 

  • Hidalgo, E., J. M. Palacios, J. Murillo, and T. Ruiz-Argueso. 1992 Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae J. Bacteriol. 174 4130–4139

    PubMed  CAS  Google Scholar 

  • Higuchi, Y., T. Yagi, and N. Yasuoka. 1997 Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis Structure 5 1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, Y., F. Toujou, K. Tsukamoto, and T. Yagi. 2000 The presence of a SO molecule in [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry J. Inorg. Biochem. 80 205–211

    Article  PubMed  CAS  Google Scholar 

  • Hoehler, T. M., B. M. Bebout, and D. J. Des Marais. 2001 The role of microbial mats in the production of reduced gases on the early Earth Nature 412 324–327

    Article  PubMed  CAS  Google Scholar 

  • Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B. Zehnder. 1998 Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration Arch. Microbiol. 169 313–321

    Article  PubMed  CAS  Google Scholar 

  • Holo, H., and R. SirevÅg. 1986 Autotrophic growth and CO2 fixation of chloroflexus-aurantiacus Arch. Microbiol. 145 173–180

    Article  CAS  Google Scholar 

  • Horner, D. S., P. G. Foster, and T. M. Embley. 2000 Iron hydrogenases and the evolution of anaerobic eukaryotes Molec. Biol. Evol. 17 1695–1709

    Article  PubMed  CAS  Google Scholar 

  • Horner, D. S., B. Heil, T. Happe, and T. M. Embley. 2002 Iron hydrogenases—ancient enzymes in modern eukaryotes Trends Biochem. Sci. 27 148–153

    Article  PubMed  CAS  Google Scholar 

  • Houchins, J. P., and R. H. Burris. 1981a Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120 J. Bacteriol. 146 215–221

    PubMed  CAS  Google Scholar 

  • Houchins, J. P., and R. H. Burris. 1981b Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120 J. Bacteriol. 146 209–214

    PubMed  CAS  Google Scholar 

  • Howarth, D. C., and G. A. Codd. 1985 The uptake and production of molecular hydrogen by unicellular cyanobacteria J. Gen. Microbiol. 131 1561–1569

    CAS  Google Scholar 

  • Hube, M., M. Blokesch, and A. Böck. 2002 Network of hydrogenase maturation in Escherichia coli: Role of accessory proteins HypA and HybF J. Bacteriol. 184 3879–3885

    Article  PubMed  CAS  Google Scholar 

  • Huber, H., M. Thomm, H. König, G. Thies, and K. O. Stetter. 1982 Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen Arch. Microbiol. 132 47–50

    Article  Google Scholar 

  • Huber, R., T. A. Langworthy, H. König, M. Thomm, C. R. Woese, U. B. Sleytr, and K. O. Stetter. 1986 Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 degrees C Arch. Microbiol. 144 324–333

    Article  CAS  Google Scholar 

  • Huber, R., J. K. Kristjansson, and K. O. Stetter. 1987 Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 degrees C Arch. Microbiol. 149 95–101

    Article  CAS  Google Scholar 

  • Huber, G., C. Spinnler, A. Gambacorta, and K. O. Stetter. 1989 Metallosphaera sedula gen. Nov. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria Syst. Appl. Microbiol. 12 38–47

    Article  Google Scholar 

  • Huber, R., C. R. Woese, T. A. Langworthy, J. K. Kristjansson, and K. O. Stetter. 1990 Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales.” Arch. Microbiol. 154 105–111

    Article  CAS  Google Scholar 

  • Huber, R., T. Wilharm, D. Huber, A. Trincone, S. Burggraf, H. König, R. Rachel, I. Rockinger, H. Fricke, and K. O. Stetter. 1992 Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium Syst. Appl. Microbiol. 15 340–351

    Article  Google Scholar 

  • Huber, R., W. Eder, S. Heldwein, G. Wanner, H. Huber, R. Rachel, and K. O. Stetter. 1998 Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park Appl. Environ. Microbiol. 64 3576–3583

    PubMed  CAS  Google Scholar 

  • Huber, H., S. Burggraf, T. Mayer, I. Wyschkony, R. Rachel, and K. O. Stetter. 2000 Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. and Ignicoccus pacificus sp. nov Int. J. Syst. Evol. Microbiol. 50 2093–3100

    Article  PubMed  Google Scholar 

  • Hungate, R. E. 1966 The Rumen and Its Microbes Academic Press New York, NY 533

    Google Scholar 

  • Huynh, B. H., D. S. Patil, I. Moura, M. Teixeira, J. J. Moura, D. V. DerVartanian, M. H. Czechowski, B. C. Prickril, H. D. Peck, Jr, and J. LeGall. 1987 On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mossbauer and redox-titration studies J. Biol. Chem. 262 795–800

    PubMed  CAS  Google Scholar 

  • Hyndman, L. A., R. H. Burris, and P. W. Wilson. 1953 Properties of hydrogenase from Azotobacter vinelandii J. Bacteriol. 65 522–531

    PubMed  CAS  Google Scholar 

  • Hynds, P. J., D. Robinson, and C. Robinson. 1998 The Sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane J. Biol. Chem. 273 34868–34874

    Article  PubMed  CAS  Google Scholar 

  • Ide, T., S. Bäumer, and U. Deppenmeier. 1999 Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments J. Bacteriol. 181 4076–4080

    PubMed  CAS  Google Scholar 

  • Igarashi, Y., T. Kodama, and Y. Minoda. 1980 Identification and characterization of a new amylolytic hydrogen bacterium, Pseudomonas hydrogenovora Agric. Biol. Chem. 44 1277–1281

    Article  CAS  Google Scholar 

  • Imhoff-Stuckle, D., and N. Pfennig. 1983 Isolation and characterization of a nicotinic acid degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov Arch. Microbiol. 136 194–198

    Article  CAS  Google Scholar 

  • Jackson, B. E., V. K. Bhupathiraju, R. S. Tanner, C. R. Woese, and M. J. McInerney. 1999 Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms Arch. Microbiol. 171 107–114

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, N. J., and M. J. Wolin. 1963 Electron-transport system of Vibrio succinogenes. 1: Enzymes and cytochromes of electron-transport system Biochim. Biophys. Acta 69 18–28

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, F. S., L. Daniels, J. A. Fox, C. T. Walsh, and W. H. Orme-Johnson. 1982 Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum J. Biol. Chem. 257 3385–3388

    PubMed  CAS  Google Scholar 

  • Jankielewicz, A., O. Klimmek, and A. Kröger. 1995 The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes Biochim. Biophys. Acta 1231 157–162

    Article  Google Scholar 

  • Jannasch, H. W., and M. J. Mottl. 1985 Geomicrobiology of deep-sea hydrothermal vents Science 229 717–725

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., R. Huber, S. Belkins, and K. O. Stetter. 1988 Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga Arch. Microbiol. 150 103–104

    Article  Google Scholar 

  • Jansen, K., R. K. Thauer, F. Widdel, and G. Fuchs. 1984 Carbon assimilation pathways in sulfate-reducing bacteria: Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii Arch. Microbiol. 138 257–262

    Article  CAS  Google Scholar 

  • Jin, S. L. C., D. K. Blanchard, and J. S. Chen. 1983 2 hydrogenases with distinct electron-carrier specificity and subunit composition in methanobacterium-formicicum Biochim. Biophys. Acta 748 8–20

    Article  CAS  Google Scholar 

  • Jochimsen, B., S. Peinemann-Simon, H. Völker, D. Stüben, R. Botz, P. Stoffers, P. R. Dando, and M. Thomm. 1997 Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece Extremophiles 1 67–73

    Article  PubMed  CAS  Google Scholar 

  • Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983a Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent Arch. Microbiol. 136 254–261

    Article  CAS  Google Scholar 

  • Jones, W. J., M. J. B. Paynter, and R. Gupta. 1983b Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt-marsh sediment Arch. Microbiol. 135 91–97

    Article  Google Scholar 

  • Jones, A. K., O. Lenz, A. Strack, T. Buhrke, and B. Friedrich. 2005 NiFe hydrogenase active site biosynthesis: identification of Hyp protein complexes in E. coli Biochemistry 43 13467–13477

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. 1989 Biogeochemistry of chemoautotrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic bacteria Science Tech Publishers Madison, WI 117–146

    Google Scholar 

  • Jørgensen, B. B. 2001 Biogeochemistry: Space for hydrogen Nature 412 286–287 and 289

    Article  PubMed  Google Scholar 

  • Joyner, A. E., W. T. Winter, and D. M. Godbout. 1977 Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria Can. J. Microbiol. 23 346–353

    Article  PubMed  CAS  Google Scholar 

  • Jungermann, K., and G. Schön. 1974 Pyruvate formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions Arch. Microbiol. 99 109–116

    Article  PubMed  CAS  Google Scholar 

  • Juszczak, A., S. Aono, and M. W. Adams. 1991 The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten J. Biol. Chem. 266 13834–13841

    PubMed  CAS  Google Scholar 

  • Kämpf, C., and N. Pfennig. 1980 Capacity of chromatiaceae for chemotropic growth-specific respiration rates of thiocystis violacea and chromatium vinosum Arch. Microbiol. 127 125–135

    Article  Google Scholar 

  • Kämpf, C., and N. Pfennig. 1986 Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and Chromatium vinosum in the dark at various O2 concentrations J. Basic Microbiol. 26 517–531

    Article  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991 Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991 Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus Arch. Microbiol. 156 99–104

    Article  CAS  Google Scholar 

  • Kärst, U., S. Suetin, and C. G. Friedrich. 1987 Purification and properties of a protein linked to the soluble hydrogenase of hydrogen-oxidizing bacteria J. Bacteriol. 169 2079–2085

    PubMed  Google Scholar 

  • Kaserer, H. 1906 Die Oxydation des Wasserstoffes durch Mikroorganismen [The oxidation of hydrogen by microorganisms] Z. Bakteriol. II Abt. 16 681–696

    CAS  Google Scholar 

  • Kasting, J. F., H. D. Holland, and L. R. Kump. 1992 Atmospheric evolution: the rise of oxygen In: J. W. Schopf and C. Klein (Eds.) The Proterozoic Biosphere: A Multidisciplinary Study Cambridge University Press Cambridge, UK 159–163

    Google Scholar 

  • Kasting, J. F. 1993 Earth’s early atmosphere Science 259 920–926

    Article  PubMed  CAS  Google Scholar 

  • Kawasumi, T., Y. Igarashi, T. Kodama, and Y. Minoda. 1984 Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium Int. J. Syst. Bacteriol. 34 5–10

    Article  CAS  Google Scholar 

  • Keltjens, J. T., and G. D. Vogels. 1993 Conversion of methanol and methylamines to methane and carbon dioxide In: J. G. Ferry (Ed.) Methanogenesis Chapman and Hall New York, NY 253–303

    Chapter  Google Scholar 

  • Kentemich, T., M. Bahnweg, F. Mayer, and H. Bothe. 1989 Localization of the reversible hydrogenase in cyanobacteria Z. Naturforsch. C. 44 384–391

    CAS  Google Scholar 

  • Kerby, R., and J. G. Zeikus. 1983 Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source Curr. Microbiol. 8 27–30

    Article  CAS  Google Scholar 

  • Kiessling, M., and O. Meyer. 1982 Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava FEMS Microbiol. Lett. 13 333–338

    Article  CAS  Google Scholar 

  • Kleihues, L., O. Lenz, M. Bernhard, T. Buhrke, and B. Friedrich. 2000 The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases J. Bacteriol. 182 2716–2724

    Article  PubMed  CAS  Google Scholar 

  • Klemme, J.-H., and H. G. Schlegel. 1967 Photoreduktion von Pyridinnucleotid durch Chromatophoren aus Rhodopseudomonas capsulata mit molekularem Wasserstoff [Photoreduction of pyridine nucleotide by chromatophores from Rhodopseudomonas capsulata with molecular hydrogen] Arch. Mikrobiol. 59 185–196

    Article  PubMed  CAS  Google Scholar 

  • Klemps, R., H. Cypionka, F. Widdel, and N. Pfennig. 1985 Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species Arch. Microbiol. 143 203–208

    Article  CAS  Google Scholar 

  • Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, J. C. Venter et al. 1997 The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus Nature 390 364–370

    Article  PubMed  CAS  Google Scholar 

  • Knüttel, K., K. Schneider, H. G. Schlegel, and A. Müller. 1989 The membrane-bound hydrogenase from Paracoccus denitrificans: Purification and molecular characterization Eur. J. Biochem. 179 101–108

    Article  PubMed  Google Scholar 

  • Kodama, T., Y. Igarashi, and Y. Minoda. 1975 Isolation and culture conditions of a bacterium grown on hydrogen and carbon dioxide Agric. Biol. Chem. 39 77–82

    Article  CAS  Google Scholar 

  • Kohlmiller Jr., E. F., and H. Gest. 1951 A comparative study of the light and dark fermentations of organic acids by Rhodospirillum rubrum J. Bacteriol. 61 269–282

    PubMed  CAS  Google Scholar 

  • Kojima, N., J. A. Fox, R. P. Hausinger, L. Daniels, W. H. Orme-Johnson, and C. Walsh. 1983 Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum Proc. Natl. Acad. Sci. USA 80 378–382

    Article  PubMed  CAS  Google Scholar 

  • Kondratieva, E. N., and I. N. Gogotov. 1983 Production of molecular hydrogen in microorganisms Adv. Biochem. Engin. Biotechnol. 28 139–190

    CAS  Google Scholar 

  • Kortlüke, C., K. Horstmann, E. Schwartz, M. Rohde, R. Binsack, and B. Friedrich. 1992 A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16 J. Bacteriol. 174 6277–6289

    PubMed  Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, A. N. Nozhevnikova, T. N. Zhilina, N. P. Bolotina, A. M. Lysenko, and G. A. Osipov. 1995 New species of psychrophilic acetogens–Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov Arch. Microbiol. 163 29–34

    Article  CAS  Google Scholar 

  • Kovács, K. L., C. Bagyinka, and L. T. Serebriakova. 1983 Distribution and orientation of hydrogenase in various photosynthetic bacteria Curr. Microbiol. 9 215–218

    Article  Google Scholar 

  • Kovács, K. L., and C. Bagyinka. 1990 Structural-properties, functional-states and physiological roles of hydrogenase in photosynthetic bacteria FEMS Microbiol. Rev. 87 407–411

    Article  Google Scholar 

  • Kovács, K. L., G. Tigyi, L. T. Thanh, S. Lakatos, Z. Kiss, and C. Bagyinka. 1991 Structural rearrangements in active and inactive forms of hydrogenase from Thiocapsa roseopersicina J. Biol. Chem. 266 947–951

    PubMed  Google Scholar 

  • Kovács, K. L., B. Fodor, Á. T. Kovács, G. Csanádi, G. Maróti, J. Balogh, S. Arvani, and G. Rákhely. 2002 Hydrogenases, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina Int J Hydrogen Energy 27 1463–1469

    Article  Google Scholar 

  • Krasna, A. I. 1979 Hydrogenase—properties and applications Enz. Microb. Technol. 1 165–172

    Article  CAS  Google Scholar 

  • Krasna, A. I. 1980 Regulation of hydrogenase activity in enterobacteria J. Bacteriol. 144 1094–1097

    PubMed  CAS  Google Scholar 

  • Krasna, A. I. 1984 Mutants of Escherichia coli with altered hydrogenase activity J. Gen. Microbiol. 130 779–787

    PubMed  CAS  Google Scholar 

  • Kristjansson, J. K., P. Schönheit, and R. K. Thauer. 1982 Different Ks-values for hydrogen of methanogenic bacteria and sulfate reducing bacteria—an explanation for the apparent inhibition of methanogenesis by sulfate Arch. Microbiol. 131 278–282

    Article  CAS  Google Scholar 

  • Kröger, A., and A. Innerhofer. 1976 Function of b-cytochromes in electron-transport from formate to fumarate of vibrio succinogenes Eur. J. Biochem. 69 497–506

    Article  Google Scholar 

  • Krylova, N. I., P. H. Janssen, and R. Conrad. 1997 Turnover of propionate in methanogenic paddy soil FEMS Microbiol. Ecol. 23 107–117

    Article  CAS  Google Scholar 

  • Kryukov, V. R., N. D. Savelyeva, and M. A. Pusheva. 1983 Calderobacterium hydrogenophilum nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium and its hydrogenase activity [in Russian] Mikrobiologiya 52 781–788

    CAS  Google Scholar 

  • Kühnemund, H. 1971 Zur Verwertung von molekularem Wasserstoff durch Micrococcus denitrificans PhD thesis University of Göttingen Göttingen, Germany

    Google Scholar 

  • Kuhner, C. H., C. Frank, A. Griesshammer, M. Schmittroth, G. Acker, A. Gössner, and H. L. Drake. 1997 Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil Int. J. Syst. Bacteriol. 47 352–358

    Article  PubMed  CAS  Google Scholar 

  • Künkel, A., J. A. Vorholt, R. K. Thauer, and R. Hedderich. 1998 An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea Eur. J. Biochem. 252 467–476

    Article  PubMed  Google Scholar 

  • Kurr, M., R. Huber, H. König, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristjansson, and K. O. Stetter. 1991 Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 degrees C Arch. Microbiol. 156 239–247

    Article  CAS  Google Scholar 

  • Küsel, K., T. Dorsch, G. Acker, E. Stackebrandt, and H. L. Drake. 2000 Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments Int. J. Syst. Evol. Microbiol. 50 537–546

    Article  PubMed  Google Scholar 

  • L’Haridon, S., V. Cilia, P. Messner, G. Raguenes, A. Gambacorta, U. B. Sleyter, D. Prieur, and C. Jeanthon. 1998 Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent Int. J. Syst. Bacteriol. 48 701–711

    Article  PubMed  Google Scholar 

  • Laanbroek, H. J., T. Abee, and I. L. Voogd. 1982a Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen Arch. Microbiol. 133 178–184

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., L. J. Stal, and H. Veldkamp. 1982b Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions Arch. Microbiol. 119 99–102

    Article  Google Scholar 

  • La Favre, J. S., and D. D. Focht. 1983 Conservation in soil of H2 liberated from N2 fixation by Hup nodules Appl. Environ. Microbiol. 46 304–311

    PubMed  Google Scholar 

  • Lalucat, J., R. Pares, and H. G. Schlegel. 1982 Pseudomonas taeniospiralis sp. nov., an R-body-containing hydrogen bacterium Int. J. Syst. Bacteriol. 32 332–338

    Article  Google Scholar 

  • Lambert, G. R., and G. D. Smith. 1980 Hydrogen metabolism by filamentous cyanobacteria Arch. Biochem. Biophys. 205 36–50

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, C. R. 2001 Succinate:quinone oxidoreductases—what can we learn from Wolinella succinogenes quinol:fumarate reductase? FEBS Lett. 504 133–141

    Article  PubMed  CAS  Google Scholar 

  • Lauerer, G., J. K. Kristjansson, T. A. Langworthy, H. König, and K. O. Stetter. 1986 Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97C Syst. Appl. Microbiol. 8 100–105

    Article  Google Scholar 

  • Leclerc, M., A. Colbeau, B. Cauvin, and P. M. Vignais. 1988 Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus Molec. Gen. Genet. 214 97–107

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. B., and P. W. Wilson. 1943 Hydrogenase and nitrogenase in Azotobacter J. Biol. Chem. 151 377–385

    CAS  Google Scholar 

  • Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981 Acetogenium kivui, a new thermophilic, hydrogen-oxidizing, acetogenic bacterium Arch. Microbiol. 129 275–280

    Article  CAS  Google Scholar 

  • Lelieveld, J., P. J. Crutzen, and F. J. Dentener. 1998 Changing concentration, lifetime and climate forcing of atmospheric methane Tellus B 50 128–150

    Article  Google Scholar 

  • Lemon, B. J., and J. W. Peters. 1999 Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum Biochemistry 38 12969–12973

    Article  PubMed  CAS  Google Scholar 

  • Lenz, O., E. Schwartz, J. Dernedde, M. Eitinger, and B. Friedrich. 1994 The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation J. Bacteriol. 176 4385–4393

    PubMed  CAS  Google Scholar 

  • Lenz, O., A. Strack, A. Tran-Betcke, and B. Friedrich. 1997 A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species J. Bacteriol. 179 1655–1663

    PubMed  CAS  Google Scholar 

  • Lenz, O., and B. Friedrich. 1998 A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus Proc. Natl. Acad. Sci. USA 95 12474–12479

    Article  PubMed  CAS  Google Scholar 

  • Lenz, O., M. Bernhard, T. Buhrke, E. Schwartz, and B. Friedrich. 2002 The hydrogen-sensing apparatus in Ralstonia eutropha J. Molec. Microbiol. Biotechnol. 4 255–262

    CAS  Google Scholar 

  • Leschine, S. B. 1995 Cellulose degradation in anaerobic environments Ann. Rev. Microbiol. 49 399–426

    Article  CAS  Google Scholar 

  • Lindblad, P., and A. Sellstedt. 1990 Occurrence and localization of an uptake hydrogenase in the filamentous heterocystous cyanobacterium Nostoc PCC-73102 Protoplasma 159 9–15

    Article  CAS  Google Scholar 

  • Liu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Drake, and D. R. Boone. 1999 Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii Int. J. Syst. Bacteriol. 49 545–556

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, L., and H. G. Wood. 1982 Acetate biosynthesis In: D. Dolphin (Ed.) B12 John Wiley New York, NY 166–202

    Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984 Peptostreptococcus productus strain that grows rapidly with CO as the energy source Appl. Environ. Microbiol. 47 961–964

    PubMed  CAS  Google Scholar 

  • Loubinoux, J., F. M. Valente, I. A. Pereira, A. Costa, P. A. Grimont, A. E. Le Faou. 2002 Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov Int. J. Syst. Evol. Microbiol. 52 1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., and M. J. Klug. 1982 Intermediary metabolism of organic matter in the sediments of a eutrophic lake Appl. Environ. Microbiol. 43 552–560

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982 Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments Appl. Environ. Microbiol. 43 1373–1379

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and M. J. Klug. 1983 Sulfate reducers can out-compete methanogens at fresh-water sulfate concentrations Appl. Environ. Microbiol. 45 187–192

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., E. J. Phillips, and D. J. Lonergan. 1989 Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens Appl. Environ. Microbiol. 55 700–706

    PubMed  CAS  Google Scholar 

  • Lupton, F. S., R. Conrad, and J. G. Zeikus. 1984 Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates J. Bacteriol. 159 843–849

    PubMed  CAS  Google Scholar 

  • Lutz, S., R. Bohm, A. Beier, and A. Böck. 1990 Characterization of divergent NtrA-dependent promoters in the anaerobically expressed gene cluster coding for hydrogenase 3 components of Escherichia coli Molec. Microbiol. 4 13–20

    Article  CAS  Google Scholar 

  • Lutz, S., A. Jacobi, V. Schlensog, R. Böhm, G. Sawers, and A. Böck. 1991 Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli Molec. Microbiol. 5 123–135

    Article  CAS  Google Scholar 

  • Lyon, E. J., S. Shima, G. Buurman, S. Chowdhuri, A. Batschauer, K. Steinbach, and R. K. Thauer. 2004 UV-A/blue-light inactivation of the “metal-free” hydrogenase (Hmd) from methanogenic archaea Eur. J. Biochem. 271 195–204

    Article  PubMed  CAS  Google Scholar 

  • Ma, K., R. N. Schicho, R. M. Kelly, and M. W. Adams. 1993 Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor Proc. Natl. Acad. Sci. USA 90 5341–5344

    Article  PubMed  CAS  Google Scholar 

  • Ma, K., and M. W. Adams. 1994 Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur J. Bacteriol. 176 6509–6517

    PubMed  CAS  Google Scholar 

  • Ma, K., R. Weiss, and M. W. Adams. 2000 Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction J. Bacteriol. 182 1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Maden, B. E. H. 1995 No soup for starters—autotrophy and the origins of metabolism Trends Biochem. Sci. 20 337–341

    Article  PubMed  CAS  Google Scholar 

  • Madigan, M. T., and H. Gest. 1978 Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant-dependent” sugar fermentation Arch. Microbiol. 117 119–122

    Article  PubMed  CAS  Google Scholar 

  • Madigan, M. T., and H. Gest. 1979 Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source J. Bacteriol. 137 524–530

    PubMed  CAS  Google Scholar 

  • Magalon, A., and A. Böck. 2000 Analysis of the HypC-HycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3 J. Biol. Chem. 275 21114–21120

    Article  PubMed  CAS  Google Scholar 

  • Mah, R. A. 1980 Isolation and Characterization of Methanococcus mazei Curr. Microbiol. 3 321–326

    Article  Google Scholar 

  • Maier, R. J., C. Fu, J. Gilbert, F. Moshiri, J. Olson, and A. G. Plaut. 1996 Hydrogen uptake hydrogenase in Helicobacter pylori FEMS Microbiol. Lett. 141 71–76

    Article  PubMed  CAS  Google Scholar 

  • Maier, T., F. Lottspeich, and A. Böck. 1995 GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli Eur. J. Biochem. 230 133–138

    Article  PubMed  CAS  Google Scholar 

  • Maier, T., and A. Böck. 1996 Nickel incorporation into hydrogenases In: R. P. Hausinger, G. L. Eichhorn and L. G. Marzilli (Eds.) Mechanisms of Metallocenter Assembly VCH Publishers New York, NY 173–192

    Google Scholar 

  • Maier, T., U. Binder, and A. Böck. 1996 Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism Arch. Microbiol. 165 333–341

    Article  PubMed  CAS  Google Scholar 

  • Malik, K. A., and D. Claus. 1979 Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria Int. J. Syst. Bacteriol. 29 283–287

    Article  Google Scholar 

  • Malik, K. A., and H. G. Schlegel. 1981 Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions FEMS Microbiol. Lett. 11 63–67

    Article  CAS  Google Scholar 

  • Malik, B., W. W. Su, H. L. Wald, I. I. Blumentals, and R. M. Kelly. 1989 Growth and gas-production for hyperthermophilic archaebacterium, pyrococcus-furiosus Biotechnol. Bioengin. 34 1050–1057

    Article  CAS  Google Scholar 

  • Malki, S., I. Saimmaime, G. De Luca, M. Rousset, Z. Dermoun, and J. P. Belaich. 1995 Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans J. Bacteriol. 177 2628–2636

    PubMed  CAS  Google Scholar 

  • Malki, S., G. De Luca, M. L. Fardeau, M. Rousset, J. P. Belaich, and Z. Dermoun. 1997 Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans Arch. Microbiol. 167 38–45

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. 1970 Origin of Eukaryotic Cells Yale University Press New Haven, CT

    Google Scholar 

  • Maroney, M. J., and P. A. Bryngelson. 2001 Spectroscopic and model studies of the Ni-Fe hydrogenase reaction mechanism J. Biol. Inorg. Chem. 6 453–459

    Article  PubMed  CAS  Google Scholar 

  • Maróti, G., B. D. Fodor, G. Rákhely, Á. T. Kovács, S. Arvani, and K. L. Kovács. 2003 Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina Eur. J. Biochem. 270 2218–2227

    Article  PubMed  CAS  Google Scholar 

  • Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983 Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum Curr. Microbiol. 8 337–340

    Article  CAS  Google Scholar 

  • Martin, W., and M. Müller. 1998 The hydrogen hypothesis for the first eukaryote Nature 392 37–41

    Article  PubMed  CAS  Google Scholar 

  • Massanz, C., V. M. Fernandez, and B. Friedrich. 1997 C-terminal extension of the H2-activating subunit, HoxH, directs maturation of the NAD-reducing hydrogenase in Alcaligenes eutrophus Eur. J. Biochem. 245 441–448

    Article  PubMed  CAS  Google Scholar 

  • Massanz, C., S. Schmidt, and B. Friedrich. 1998 Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus J. Bacteriol. 180 1023–1029

    PubMed  CAS  Google Scholar 

  • Massanz, C., and B. Friedrich. 1999 Amino acid replacements at the H2-activating site of the NAD-reducing hydrogenase from Alcaligenes eutrophus Biochemistry 38 14330–14337

    Article  PubMed  CAS  Google Scholar 

  • Matias, P. M., C. M. Soares, L. M. Saraiva, R. Coelho, J. Morais, J. Le Gall, and M. A. Carrondo. 2001 [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3 J. Biol. Inorg. Chem. 6 63–81

    Article  PubMed  CAS  Google Scholar 

  • McCrae, R. E., J. Hanus, and H. J. Evans. 1978 Properties of the hydrogenase system in Rhizobium japonicum bacteroids Biochem. Biophys. Res. Commun. 80 384–390

    Article  PubMed  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, and N. Pfennig. 1979 Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens Arch. Microbiol. 122 129–135

    Article  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981a Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039

    PubMed  CAS  Google Scholar 

  • McInerney, M. J., R. I. Mackie, and M. P. Bryant. 1981b Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid Appl. Environ. Microbiol. 41 826–828

    PubMed  CAS  Google Scholar 

  • Menon, A. L., L. W. Stults, R. L. Robson, and L. E. Mortenson. 1990 Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii Gene 96 67–74

    Article  PubMed  CAS  Google Scholar 

  • Menon, N. K., J. Robbins, J. C. Wendt, K. T. Shanmugam, and A. E. Przybyla. 1991 Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1 J. Bacteriol. 173 4851–4861

    PubMed  CAS  Google Scholar 

  • Menon, A. L., and R. L. Robson. 1994 In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii J. Bacteriol. 176 291–295

    PubMed  CAS  Google Scholar 

  • Menon, N. K., C. Y. Chatelus, M. DerVartanian, J. C. Wendt, K. T. Shanmugam, H. D. Peck, and A. E. Przybyla. 1994 Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2 J. Bacteriol. 176 4416–4423

    PubMed  CAS  Google Scholar 

  • Mergeay, M., D. Nies, H. G. Schlegel, J. Gerits, P. Charles, and F. Vangijsegem. 1985 Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals J. Bacteriol. 162 328–334

    PubMed  CAS  Google Scholar 

  • Meuer, J., S. Bartoschek, J. Koch, A. Künkel, and R. Hedderich. 1999 Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri Eur. J. Biochem. 265 325–335

    Article  PubMed  CAS  Google Scholar 

  • Meuer, J., H. C. Kuettner, J. K. Zhang, R. Hedderich, and W. W. Metcalf. 2002 Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation Proc. Natl. Acad. Sci. USA 99 5632–5637

    Article  PubMed  CAS  Google Scholar 

  • Meyer, O., and H. G. Schlegel. 1978 Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov Arch. Microbiol. 118 35–43

    Article  PubMed  CAS  Google Scholar 

  • Meyer, O. 1989 Aerobic, carbon monoxide-oxidizing bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Publishers/Springer-Verlag Madison, WI 331–350

    Google Scholar 

  • Meyer, J., and J. Gagnon. 1991 Primary structure of hydrogenase I from Clostridium pasteurianum Biochemistry 30 9697–9704

    Article  PubMed  CAS  Google Scholar 

  • Mikheeva, L. E., O. Schmitz, S. V. Shestakov, and H. Bothe. 1995 Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities Z. Naturforsch. C 50 505–510

    CAS  Google Scholar 

  • Miller, S. L. 1953 A production of amino acids under possible primitive earth conditions Science 117 528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1973 Formation of hydrogen and formate by Ruminococcus albus J. Bacteriol. 116 836–846

    PubMed  CAS  Google Scholar 

  • Miller, S. L., and L. E. Orgel. 1974 The Origins of Life on Earth Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1979 Fermentations by saccharolytic intestinal bacteria Am. J. Clin. Nutr. 32 164–172

    PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1985 Methanosphaera stadtmaniae gen. nov., sp. nov.: A species that forms methane by reducing methanol with hydrogen Arch. Microbiol. 141 116–122

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko, M. L., E. A. Bonch-Osmolovskaya, A. Neuner, N. A. Kostrikina, N. A. Chernych, and V. A. Alekseev. 1989 Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium Syst. Appl. Microbiol. 12 257–262

    Article  Google Scholar 

  • Miroshnichenko, M. L., G. A. Gongadze, A. M. Lysenko, and E. A. Bonch-Osmolovskaya. 1994 Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand) Arch. Microbiol. 161 88–93

    CAS  Google Scholar 

  • Moezelaar, R., and L. J. Stal. 1994 Fermentation in the unicellular cyanobacterium Microcystis PCC7806 Arch. Microbiol. 162 63–69

    Article  CAS  Google Scholar 

  • Moezelaar, R., S. M. Bijvank, and L. J. Stal. 1996 Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplastes Appl. Environ. Microbiol. 62 1752–1758

    PubMed  CAS  Google Scholar 

  • Mohn, W. W., and J. M. Tiedje. 1991 Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei Arch. Microbiol. 157 1–6

    Article  CAS  Google Scholar 

  • Montet, Y., P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian, M. J. Field, M. Frey, and J. C. Fontecilla-Camps. 1997 Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics Nat. Struct. Biol. 4 523–526

    Article  PubMed  CAS  Google Scholar 

  • Moreira, D., and P. Lopez-Garcia. 1998 Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis J. Molec. Evol. 47 517–530

    Article  PubMed  CAS  Google Scholar 

  • Morelli, X., A. Dolla, M. Czjzek, P. N. Palma, F. Blasco, L. Krippahl, J. J. Moura, and F. Guerlesquin. 2000 Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553-ferredoxin complex Biochemistry 39 2530–2537

    Article  PubMed  CAS  Google Scholar 

  • Mortenson, L. E., and J.-S. Chen. 1974 Hydrogenase In: J. B. Neilands (Ed.) Microbial Iron Metabolism Academic Press New York, NY 231–282

    Google Scholar 

  • Mountfort, D. O., W. J. Brulla, L. R. Krumholz, and M. P. Bryant. 1984 Syntrophus buswellii gen. nov., sp. nov.: A benzoate catabolizer from methanogenic ecosystems Int. J. Syst. Bacteriol. 34 216–217

    Article  Google Scholar 

  • Müller, M. 1993 The hydrogenosome J. Gen. Microbiol. 139 2879–2889

    Article  PubMed  Google Scholar 

  • Müller, S., and A. Klein. 2001 Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae Molec. Genet. Genom. 265 1069–1075

    Article  Google Scholar 

  • Mura, G. M., P. Pedroni, C. Pratesi, G. Galli, L. Serbolisca, and G. Grandi. 1996 The [Ni-Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum Microbiology 142 829–836

    Article  PubMed  CAS  Google Scholar 

  • Murry, M. A., and M. F. Lopez. 1989 Interaction between hydrogenase, nitrogenase, and respiratory activities in a Frankia isolate from Alnus rubra Can. J. Microbiol. 35 636–641

    Article  PubMed  CAS  Google Scholar 

  • Muth, E., E. Mörschel, and A. Klein. 1987 Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae Eur. J. Biochem. 169 571–577

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H. 1939 Further studies on hydrogen metabolism in purple bacteria and a comment on the mutual relationship between Thio-and Athirhodacea Acta Phochim. 11 109–125

    CAS  Google Scholar 

  • Nakamura, H. 1941 Further studies on bacterial photosynthesis Acta Phochim. 12 43–64

    Google Scholar 

  • Nakos, G., and L. E. Mortenson. 1971 Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5 Biochim. Biophys. Acta 227 576–583

    Article  PubMed  CAS  Google Scholar 

  • Nandi, R., and S. Sengupta. 1998 Microbial production of hydrogen: an overview Crit. Rev. Microbiol. 24 61–84

    Article  PubMed  CAS  Google Scholar 

  • Nelson, L. M., and S. O. Salminen. 1982 Uptake hydrogenase activity and ATP formation in Rhizobium leguminosarum bacteroids J. Bacteriol. 151 989–995

    PubMed  CAS  Google Scholar 

  • Nelson, K. E., R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson et al. 1999 Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima Nature 399 323–329

    Article  PubMed  CAS  Google Scholar 

  • Neuner, A., H. W. Jannasch, S. Belkin, and K. O. Stetter. 1990 Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria Arch. Microbiol. 153 205–207

    Article  Google Scholar 

  • Nicolet, Y., C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-Camps. 1999 Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center Struct. Fold. Des. 7 13–23

    Article  CAS  Google Scholar 

  • Nicolet, Y., B. J. Lemon, J. C. Fontecilla-Camps, and J. W. Peters. 2000 A novel FeS cluster in Fe-only hydrogenases Trends Biochem. Sci. 25 138–143

    Article  PubMed  CAS  Google Scholar 

  • Niklewski, W. 1910 über die Wasserstoffoxydation durch Mikroorganismen [On the oxidation of hydrogen by microorganisms] Jahrb. Wiss. Bot. 48 113–142

    Google Scholar 

  • Nisbet, E. G., and C. M. R. Fowler. 1999 Archaean metabolic evolution of microbial mats Proc. R. Soc. Lond. B 266 2375–2382

    Article  Google Scholar 

  • Nishihara, H., Y. Igarashi, and T. Kodama. 1989 Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment Arch. Microbiol. 152 39–43

    Article  CAS  Google Scholar 

  • Nishihara, H., Y. Igarashi, and T. Kodama. 1990 A new isolate of hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring Arch. Microbiol. 153 294–298

    Article  CAS  Google Scholar 

  • Nishihara, H., Y. Igarashi, and T. Kodama. 1991 Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium Int. J. Syst. Bacteriol. 41 130–133

    Article  Google Scholar 

  • Nishihara, H., Y. Miyashita, K. Aoyama, T. Kodama, Y. Igarashi, and Y. Takamura. 1997 Characterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogen-oxidizing bacterium Hydrogenovibrio marinus Biochem. Biophys. Res. Commun. 232 766–770

    Article  PubMed  CAS  Google Scholar 

  • Nivière, V., S. L. Wong, and G. Voordouw. 1992 Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein J. Gen. Microbiol. 138 2173–2183

    Article  PubMed  Google Scholar 

  • Noll, I., S. Müller, and A. Klein. 1999 Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements Genetics 152 1335–1341

    PubMed  CAS  Google Scholar 

  • Odom, J. M., and H. D. Peck. 1981 Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas J. Bacteriol. 147 161–169

    PubMed  CAS  Google Scholar 

  • Oelmüller, U., H. G. Schlegel, and C. G. Friedrich. 1990 Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases J. Bacteriol. 172 7057–7064

    PubMed  Google Scholar 

  • Ohi, K., N. Takada, S. Komemushi, M. Okazaki, and Y. Miura. 1979 A new species of hydrogen-utilizing bacterium J. Gen. Appl. Microbiol. 25 53–58

    Article  CAS  Google Scholar 

  • Ollivier, B., C. E. Hatchikian, G. Prensier, J. Guezennec, and J. L. Garcia. 1991 Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal Int. J. Syst. Bacteriol. 41 74–81

    Article  CAS  Google Scholar 

  • Ollivier, B., M. L. Fardeau, J. L. Cayol, M. Magot, B. K. Patel, G. Prensier, and J. L. Garcia. 1998 Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well Int. J. Syst. Bacteriol. 48 821–828

    Article  PubMed  Google Scholar 

  • Olson, J. W., C. Fu, and R. J. Maier. 1997 The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase Molec. Microbiol. 24 119–128

    Article  CAS  Google Scholar 

  • Olson, J. W., N. S. Mehta, and R. J. Maier. 2001 Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori Molec. Microbiol. 39 176–82

    Article  CAS  Google Scholar 

  • Olson, J. W., and R. J. Maier. 2002 Molecular hydrogen as an energy source for Helicobacter pylori Science 298 1788–1790

    Article  PubMed  CAS  Google Scholar 

  • Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001 Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites Proc. Natl. Acad. Sci. USA 98 12215–12220

    Article  PubMed  CAS  Google Scholar 

  • Oremland, R. S., and S. Polcin. 1982 Methanogenesis and sulfate reduction: competetitive and noncompetitive substrates in in an estuarine environment Appl. Environ. Microbiol. 44 1270–1276

    PubMed  CAS  Google Scholar 

  • Ormerod, J. G., and H. Gest. 1962 Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria Bacteriol. Rev. 26 51–66

    PubMed  CAS  Google Scholar 

  • Ovtsyna, A. O., M. Schultze, I. A. Tikhonovich, H. P. Spaink, E. Kondorosi, A. Kondorosi, and C. Staehelin. 2000 Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates Molec. Plant-Microbe Interact. 13 799–807

    Article  CAS  Google Scholar 

  • Packer, L., and W. Vishniac. 1955 Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec J. Bacteriol. 70 216–223

    PubMed  CAS  Google Scholar 

  • Palacios, J. M., J. Murillo, A. Leyva, G. Ditta, and T. Ruiz-Argueso. 1990 Differential expression of hydrogen uptake (hup) genes in vegetative and symbiotic cells of Rhizobium leguminosarum Molec. Gen. Genet. 221 363–370

    PubMed  CAS  Google Scholar 

  • Palleroni, N. J., and A. V. Palleroni. 1978 Alcaligenes latus, a new species of hydrogen-utilizing bacteria Int. J. Syst. Bacteriol. 28 416–424

    Article  Google Scholar 

  • Park, S. S., and B. T. DeCicco. 1974 Autotrophic growth with hydrogen of Mycobacterium gordonae and another scotochromogenic mycobacterium Int. J. Syst. Bacteriol. 24 338–345

    Article  Google Scholar 

  • Paschos, A., R. S. Glass, and A. Böck. 2001 Carbamoyl phosphate requirement for synthesis of the active center of [NiFe]-hydrogenases FEBS Lett. 488 9–12

    Article  PubMed  CAS  Google Scholar 

  • Paschos, A., A. Bauer, A. Zimmerman, E. Zehelein, and A. Böck. 2002 HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation J. Biol. Chem. 277 49945–49951

    Article  PubMed  CAS  Google Scholar 

  • Paynter, M. J., and R. E. Hungate. 1968 Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen J. Bacteriol. 95 1943–1951

    PubMed  CAS  Google Scholar 

  • Peck, H. D., and H. Gest. 1957 Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria J. Bacteriol. 73 706–721

    PubMed  CAS  Google Scholar 

  • Pedroni, P., A. Della Volpe, G. Galli, G. M. Mura, C. Pratesi, and G. Grandi. 1995 Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases Microbiology 141 449–458

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa, F. O., J. Döbereiner, and M. G. Yates. 1980 Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia J. Gen. Microbiol. 119 547–551

    CAS  Google Scholar 

  • Peschek, G. A. 1979 Aerobic hydrogenase activity in Anacystis nidulans: The oxyhydrogen reaction Biochim. Biophys. Acta 548 203–215

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. W., K. Fisher, and D. R. Dean. 1995 Nitrogenase structure and function: a biochemical-genetic perspective Ann. Rev. Microbiol. 49 335–366

    Article  CAS  Google Scholar 

  • Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt. 1998 X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution Science 282 1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. W. 1999 Structure and mechanism of iron-only hydrogenases Curr. Opin. Struct. Biol. 9 670–676

    Article  PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984 The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate Arch. Microbiol. 137 63–69

    Article  PubMed  CAS  Google Scholar 

  • Phelps, T. J., and J. G. Zeikus. 1984 Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake Appl. Environ. Microbiol. 48 1088–1095

    PubMed  CAS  Google Scholar 

  • Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht. 1998 A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [FeFe]-hydrogenases Eur. J. Biochem. 258 572–578

    Article  PubMed  CAS  Google Scholar 

  • Pierik, A. J., W. Roseboom, R. P. Happe, K. A. Bagley, and S. P. Albracht. 1999 Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology’s way to activate H2 J. Biol. Chem. 274 3331–3337

    Article  PubMed  CAS  Google Scholar 

  • Pihl, T. D., R. N. Schicho, R. M. Kelly, and R. J. Maier. 1989 Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii Proc. Natl. Acad. Sci. USA 86 138–141

    Article  PubMed  CAS  Google Scholar 

  • Pihl, T. D., and R. J. Maier. 1991 Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii J. Bacteriol. 173 1839–1844

    PubMed  CAS  Google Scholar 

  • Pikuta, E. V., T. N. Zhilina, G. A. Zavarzin, N. A. Kostrikina, G. A. Osipov, and F. A. Rainey. 1998 Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol [in Russian] Mikrobiologiya 67 123–131

    Google Scholar 

  • Pilkington, S. J., J. M. Skehel, R. B. Gennis, and J. E. Walker. 1991 Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase Biochemistry 30 2166–2175

    Article  PubMed  CAS  Google Scholar 

  • Pinkwart, M., K. Schneider, and H. G. Schlegel. 1983 Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus Biochim. Biophys. Acta 745 267–278

    Article  PubMed  CAS  Google Scholar 

  • Pley, U., J. Schipka, A. Gambacorta, H. W. Jannasch, H. Fricke, R. Rachel, and K. O. Stetter. 1991 Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 degrees C Syst. Appl. Microbiol. 14 245–253

    Article  Google Scholar 

  • Podzuweit, H. G., K. Schneider, and H. G. Schlegel. 1983 Autotrophic growth and hydrogenase activity of Pseudomonas saccharophila strains FEMS Microbiol. Lett. 19 169–173

    Article  CAS  Google Scholar 

  • Pohorelic, B. K. J., J. K. Voordouw, E. Lojou, A. Dolla, J. Harder, and G. Voordouw. 2002 Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism J. Bacteriol. 184 679–686

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1952 Competitive and non-competitive inhibitors of bacterial sulphate reduction J. Gen. Microbiol. 6 128–142

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J. R., and L. L. Campbell. 1966 Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria Bacteriol Rev. 30 732–738

    PubMed  CAS  Google Scholar 

  • Przybyla, A. E., J. Robbins, N. Menon, and H. D. Peck. 1992 Structure-function relationships among the nickel-containing hydrogenases FEMS Microbiol. Rev. 8 109–135

    PubMed  CAS  Google Scholar 

  • Pusheva, M. A., E. I. Rainina, N. P. Borodulina, A. M. Ryabokon, T. A. Makhlis, and O. R. Kotsyurbenko. 1991 Acetate formation from hydrogen and carbon dioxide by a thermophilic homoacetic bacterium Acetogenium kivui Microbiology 60 422–426

    Google Scholar 

  • Qadri, S. M., and D. S. Hoare. 1968 Formic hydrogenlyase and the photoassimilation of formate by a strain of Rhodopseudomonas palustris J. Bacteriol. 95 2344–2357

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., and L. G. Ljungdahl. 1984 Hydrogenase from Acetobacterium woodii Arch. Microbiol. 139 361–365

    Article  PubMed  CAS  Google Scholar 

  • Rain, J. C., L. Selig, H. De Reuse, V. Battaglia, C. Reverdy, S. Simon, G. Lenzen, F. Petel, J. Wojcik, V. Schachter, Y. Chemama, A. Labigne, and P. Legrain. 2001 The protein-protein interaction map of Helicobacter pylori Nature 409 211–215

    Article  PubMed  CAS  Google Scholar 

  • Rákhely, G., A. Colbeau, J. Garin, P. M. Vignais, and K. L. Kovács. 1998 Unusual organization of the genes coding for HydSL, the stable [NiFe]hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS J. Bacteriol. 180 1460–1465

    PubMed  Google Scholar 

  • Rákhely, G., Z. H. Zhou, M. W. W. Adams, and K. L. Kovács. 1999 Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis Eur. J. Biochem. 266 1158–1165

    Article  PubMed  Google Scholar 

  • Rákhely, G., A. T. Kovács, G. Maróti, B. D. Fodor, G. Csanádi, D. Latinovics, and K. L. Kovács. 2004 Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina Appl. Environ. Microbiol. 70 722–728

    Article  PubMed  CAS  Google Scholar 

  • Reeve, J. N., G. S. Beckler, D. S. Cram, P. T. Hamilton, J. W. Brown, J. A. Krzycki, A. F. Kolodziej, L. Alex, W. H. Orme-Johnson, and C. T. Walsh. 1989 A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain δH encodes a polyferredoxin Proc. Natl. Acad. Sci. USA 86 3031–3035

    Article  PubMed  CAS  Google Scholar 

  • Reissmann, S., E. Hochleitner, H. Wang, A. Paschos, F. Lottspeich, R. S. Glass, and A. Böck. 2003 Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands Science 299 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Rey, L., J. Imperial, J. M. Palacios, and T. Ruiz-Argueso. 1994 Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis J. Bacteriol. 176 6066–6073

    PubMed  CAS  Google Scholar 

  • Rey, L., D. Fernandez, B. Brito, Y. Hernando, J. M. Palacios, J. Imperial, and T. Ruiz-Argueso. 1996 The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity Molec. Gen. Genet. 252 237–248

    PubMed  CAS  Google Scholar 

  • Richard, D. J., G. Sawers, F. Sargent, L. McWalter, and D. H. Boxer. 1999 Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli Microbiology 145 2903–2912

    PubMed  CAS  Google Scholar 

  • Ricke, S. C., S. A. Martin, and D. J. Nisbet. 1996 Ecology, metabolism, and genetics of ruminal selenomonads Crit. Rev. Microbiol. 22 27–65

    Article  PubMed  CAS  Google Scholar 

  • Rieder, R., R. Cammack, and D. O. Hall. 1984 Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4) Eur. J. Biochem. 145 637–643

    Article  PubMed  CAS  Google Scholar 

  • Rieu-Lesme, F., B. Morvan, M. D. Collins, G. Fonty, and A. Willems. 1996 A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov FEMS Microbiol. Lett. 140 281–286

    PubMed  CAS  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1982 Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment Appl. Environ. Microbiol. 44 1374–1384

    PubMed  CAS  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1984 Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions Arch. Microbiol. 137 26–32

    Article  CAS  Google Scholar 

  • Robson, R. 2001 The assembly line In: R. Cammack, M. Frey, and R. Robson (Eds.) Hydrogen As a Fuel. Learning from Nature Taylor & Francis London, UK 57–72

    Google Scholar 

  • Rodrigue, A., N. Batia, M. Muller, O. Fayet, R. Bohm, M. A. Mandrand-Berthelot, and L. F. Wu. 1996 Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli J. Bacteriol. 178 4453–44560

    PubMed  CAS  Google Scholar 

  • Rodrigue, A., A. Chanal, K. Beck, M. Muller, and L. F. Wu. 1999 Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway J. Biol. Chem. 274 13223–13228

    Article  PubMed  CAS  Google Scholar 

  • Roelofsen, P. A. 1934 On the metabolism of the purple sulphur bacteria Proc. Kon. Ned. Acad. Wet. 37 660–669

    Google Scholar 

  • Rogosa, M. 1971 Transfer of Peptostreptococcus elsdenii Gutierrez et al. to a new genus, Megasphaera (M. elsdenii (Gutierrez et al.) comb. nov.) Int. J. Syst. Bacteriol. 21 187–189

    Article  Google Scholar 

  • Romesser, J. A., R. S. Wolfe, F. Mayer, E. Spiess, and A. Walter-Mauruschat. 1979 Methanogenium, a novel genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov Arch. Microbiol. 121 147–153

    Article  CAS  Google Scholar 

  • Rossi, M., W. B. Pollock, M. W. Reij, R. G. Keon, R. Fu, and G. Voordouw. 1993 The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex J. Bacteriol. 175 4699–4711

    PubMed  CAS  Google Scholar 

  • Rossmann, R., M. Sauter, F. Lottspeich, and A. Böck. 1994 Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537 Eur. J. Biochem. 220 377–384

    Article  PubMed  CAS  Google Scholar 

  • Rousset, M., Z. Dermoun, C. E. Hatchikian, and J. P. Belaich. 1990 Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans Gene 94 95–101

    Article  PubMed  CAS  Google Scholar 

  • Rousset, M., V. Magro, N. Forget, B. Guigliarelli, J. P. Belaich, and E. C. Hatchikian. 1998a Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400 J. Bacteriol. 180 4982–4986

    PubMed  CAS  Google Scholar 

  • Rousset, M., Y. Montet, B. Guigliarelli, N. Forget, M. Asso, P. Bertrand, J. C. Fontecilla-Camps, and E. C. Hatchikian. 1998b [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis Proc. Natl. Acad. Sci. USA 95 11625–11630

    Article  PubMed  CAS  Google Scholar 

  • Rozanova, E. P., T. N. Nazina, and A. S. Galushko. 1988 Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. [in Russian] Mikrobiologiya (Moskva) 57 634–641

    CAS  Google Scholar 

  • Santiago, B., and O. Meyer. 1997 Purification and molecular characterization of the H2 uptake membrane-bound NiFe-hydrogenase from the carboxidotrophic bacterium Oligotropha carboxidovorans J. Bacteriol. 179 6053–6060

    PubMed  CAS  Google Scholar 

  • Santini, C. L., B. Ize, A. Chanal, M. Muller, G. Giordano, and L. F. Wu. 1998 A novel sec-independent periplasmic protein translocation pathway in Escherichia coli EMBO J. 17 101–112

    Article  PubMed  CAS  Google Scholar 

  • Sapra, R., M. F. J. M. Verhagen, and M. W. W. Adams. 2000 Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus J. Bacteriol. 182 3423–3428

    Article  PubMed  CAS  Google Scholar 

  • Sargent, F., E. G. Bogsch, N. R. Stanley, M. Wexler, C. Robinson, B. C. Berks, and T. Palmer. 1998 Overlapping functions of components of a bacterial Sec-independent protein export pathway EMBO J. 17 3640–3650

    Article  PubMed  CAS  Google Scholar 

  • Sasikala, K., C. V. Ramana, P. R. Rao, and K. L. Kovács. 1993 Anoxygenic photosynthetic bacteria: physiology and advances in hydrogen production technology Adv. Applied Microbiol. 68 211–295

    Article  Google Scholar 

  • Sauter, M., R. Böhm, and A. Böck. 1992 Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli Molec. Microbiol. 6 1523–1532

    Article  CAS  Google Scholar 

  • Sawers, R. G., S. P. Ballantine, and D. H. Boxer. 1985 Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: Evidence for a third isoenzyme J. Bacteriol. 164 1324–1331

    PubMed  CAS  Google Scholar 

  • Sawers, R. G., and D. H. Boxer. 1986 Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12 Eur. J. Biochem. 156 265–275

    Article  PubMed  CAS  Google Scholar 

  • Sawers, R. G., D. J. Jamieson, C. F. Higgins, and D. H. Boxer. 1986 Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium J. Bacteriol. 168 398–404

    PubMed  CAS  Google Scholar 

  • Sawers, R. G. 1994 The hydrogenases and formate dehydrogenases of Escherichia coli Ant. v. Leeuwenhoek 66 57–88

    Article  CAS  Google Scholar 

  • Sayavedra-Soto, L. A., G. K. Powell, H. J. Evans, and R. O. Morris. 1988 Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase Proc. Natl. Acad. Sci. USA 85 8395–8399

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, T., and P. Schönheit. 1991 Pyruvate metabolism of the hyperthermophic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP-forming) Arch. Microbiol. 155 366–377

    Article  Google Scholar 

  • Schauder, R., F. Widdel, and G. Fuchs. 1987 Carbon assimilation pathways in sulfate-reducing bacteria. 2: Enzymes of a reductive citric-acid cycle in the autotrophic Desulfobacter hydrogenophilus Arch. Microbiol. 148 218–225

    Article  CAS  Google Scholar 

  • Schauder, R., A. Preuss, M. Jetten, and G. Fuchs. 1989 Oxidative and reductive acetyl CoA carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2: Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase Arch. Microbiol. 151 84–89

    Article  CAS  Google Scholar 

  • Scheifinger, C. C., B. Linehan, and M. J. Wolin. 1975 H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria Appl. Microbiol. 29 480–483

    PubMed  CAS  Google Scholar 

  • Schenk, A., and M. Aragno. 1979 Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen J. Gen. Microbiol. 115 333–341

    Article  Google Scholar 

  • Schink, B., and H. G. Schlegel. 1979 The membrane-bound hydrogenase of Alcaligenes eutrophus. I: Solubilization, purification, and biochemical properties Biochim. Biophys. Acta 567 315–324

    Article  PubMed  CAS  Google Scholar 

  • Schink, B. 1982 Isolation of a hydrogenase-cytochrome b complex from cytoplasmic membranes of Xanthobacter autotrophicus GZ29 FEMS Microbiol. Lett. 13 289–293

    Article  CAS  Google Scholar 

  • Schink, B., and M. Stieb. 1983 Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov Appl. Environ. Microbiol. 45 1905–1913

    PubMed  CAS  Google Scholar 

  • Schink, B. 1985 Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov Arch. Microbiol. 142 295–301

    Article  CAS  Google Scholar 

  • Schlensog, V., and A. Böck. 1990 Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli Molec. Microbiol. 4 1319–1327

    Article  CAS  Google Scholar 

  • Schlensog, V., S. Lutz, and A. Böck. 1994 Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli J. Biol. Chem. 269 19590–19596

    PubMed  CAS  Google Scholar 

  • Schmidt, U., and R. Conrad. 1993 Hydrogen, carbon monoxide, and methane dynamics in Lake Constance Limnol. Oceanogr. 38 1214–1226

    Article  CAS  Google Scholar 

  • Schmitz, O., G. Boison, R. Hilscher, B. Hundeshagen, W. Zimmer, F. Lottspeich, and H. Bothe. 1995 Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria Eur. J. Biochem. 233 266–276

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, O., and H. Bothe. 1996 NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans FEMS Microbiol. Lett. 135 97–101

    CAS  Google Scholar 

  • Schmitz, O., M. Katayama, S. B. Williams, T. Kondo, and S. S. Golden. 2000 CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock Science 289 765–768

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, O., G. Boison, and H. Bothe. 2001 Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942 Molec. Microbiol. 41 1409–1417

    Article  CAS  Google Scholar 

  • Schmitz, O., G. Boison, H. Salzmann, H. Bothe, K. Schutz, S. H. Wang, and T. Happe. 2002 HoxE—a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria Biochim. Biophys. Acta 1554 66–74

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., V. Rudolph, and H. G. Schlegel. 1973 Description and physiological characterization of a coryneform hydrogen bacterium, strain-14 g Arch. Mikrobiol. 93 179–193

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., and H. G. Schlegel. 1976 Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16 Biochim. Biophys. Acta 452 66–80

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., and H. G. Schlegel. 1977 Localization and stability of hydrogenases from aerobic hydrogen bacteria Arch. Microbiol. 112 229–238

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., R. Cammack, and H. G. Schlegel. 1984a Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b Eur. J. Biochem. 142 75–84

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., H. G. Schlegel, and K. Jochim. 1984b Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b Eur. J. Biochem. 138 533–541

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Muramatsu, H., A. Neumann, M. Messmer, E. Moore, and G. Diekert. 1995 Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium Arch. Microbiol. 63 48–56

    Article  Google Scholar 

  • Schön, G. 1968 Function of reserve-material for adaptive utilization of fructose and synthesis of bacteriochlorophyll in anaerobic dark and light cultures of Rhodospirillum rubrum [in Russian] Arch. Mikrobiol. 63 362–375

    Article  PubMed  Google Scholar 

  • Schön, G., and M. Biedermann. 1973 Growth and adaptive hydrogen production of Rhodospirillum rubrum (f1) in anaerobic dark cultures Biochim. Biophys. Acta 304 65–75

    Article  PubMed  Google Scholar 

  • Schönheit, P., J. K. Kristjansson, and R. K. Thauer. 1982 Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate Arch. Microbiol. 132 285–288

    Article  Google Scholar 

  • Schropp, S. J., M. I. Scranton, and J. R. Schwarz. 1987 Dissolved hydrogen, facultatively anaerobic, hydrogen-producing bacteria, and potential production rates in the western North Atlantic Ocean and Gulf of Mexico Limnol. Oceanogr. 32 386–402

    Article  Google Scholar 

  • Schubert, K. R., and H. J. Evans. 1976 Hydrogen evolution; a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts Proc. Natl. Acad. Sci. USA 73 1207–1211

    Article  PubMed  CAS  Google Scholar 

  • Schuler, S., and R. Conrad. 1990 Soils contain 2 different activities for oxidation of hydrogen FEMS Microbiol. Ecol. 73 77–83

    Article  CAS  Google Scholar 

  • Schuler, S., and R. Conrad. 1991a Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season Biol. Fertil. Soils 12 127–130

    Article  CAS  Google Scholar 

  • Schuler, S., and R. Conrad. 1991b Hydrogen oxidation in soil following rhizobial H2 production due to N2 fixation by a Vicia faba-Rhizobium leguminosarum symbiosis Biol. Fertil. Soils 11 190–195

    Article  CAS  Google Scholar 

  • Schultz, J. E., and P. F. Weaver. 1982 Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata J. Bacteriol. 149 181–190

    PubMed  CAS  Google Scholar 

  • Schumacher, W., P. M. H. Kroneck, and N. Pfennig. 1992 Comparative systematic study on Spirillum-5175, campylobacter and Wolinella species—description of Spirillum-5175 as Sulfurospirillum deleyianum gen. nov., spec. nov Arch. Microbiol. 158 287–293

    Article  CAS  Google Scholar 

  • Schütz, H., R. Conrad, S. Goodwin, and W. Seiler. 1988 Emission of hydrogen from deep and shallow freshwater environments Biogeochemistry 5 295–311

    Article  Google Scholar 

  • Schwartz, E., U. Gerischer, and B. Friedrich. 1998 Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes J. Bacteriol. 180 3197–3204

    PubMed  CAS  Google Scholar 

  • Schwartz, E., T. Buhrke, U. Gerischer, and B. Friedrich. 1999 Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16 J. Bacteriol. 181 5684–5692

    PubMed  CAS  Google Scholar 

  • Seefeldt, L. C., and D. J. Arp. 1986 Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer Biochimie 68 25–34

    Article  PubMed  CAS  Google Scholar 

  • Segerer, A., A. Neuner, J. K. Kristjansson, and K. O. Stetter. 1986 Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.—facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria Int. J. Syst. Bacteriol. 36 559–564

    Article  Google Scholar 

  • Segerer, A. H., A. Trincone, M. Gahrtz, and K. O. Stetter. 1991 Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales Int. J. Syst. Bacteriol. 41 495–501

    Article  Google Scholar 

  • Sellstedt, A. 1989 Occurence and activity of hydrogenase in symbiotic Frankia from field-collected Alnus incana Physiol. Plant. 75 304–308

    Article  CAS  Google Scholar 

  • Seiler, W. 1978 The influence of the biosphere on the atmospheric CO and H2 cycles In: W. Krumbein (Ed.) Environmental Biogeochemistry and Geomicrobiology Ann Arbor Science Publishing Ann Arbor, MI 773–810

    Google Scholar 

  • Serebryakova, L. T., N. A. Zorin, and P. Lindblad. 1994 Reversable hydrogenase in Anabaena variabilis ATCC 29413 Arch. Microbiol. 161 140–144

    Google Scholar 

  • Serebryakova, L. T., M. Medina, N. A. Zorin, I. N. Gogotov, and R. Cammack. 1996 Reversible hydrogenase of Anabaena variabilis ATCC 29413: Catalytic properties and characterization of redox centres FEBS Lett. 383 79–82

    Article  PubMed  CAS  Google Scholar 

  • Serebryakova, L. T., M. Sheremetieva, and A. A. Tsygankov. 1998 Reversible hydrogenase of Gloeocapsa alpicola in continuous culture FEBS Lett. 166 89–94

    CAS  Google Scholar 

  • Settles, A. M., A. Yonetani, A. Baron, D. R. Bush, K. Cline, and R. Martienssen. 1997 Sec-independent protein translocation by the maize Hcf106 protein Science 278 1467–1470

    Article  PubMed  CAS  Google Scholar 

  • Setzke, E., R. Hedderich, S. Heiden, and R. K. Thauer. 1994 H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum—composition and properties Eur. J. Biochem. 220 139–148

    Article  PubMed  CAS  Google Scholar 

  • Shah, N. N., and D. S. Clark. 1990 Partial-purification and characterization of 2 hydrogenases from the extreme thermophile methanococcus-jannaschii Appl. Environ. Microbiol. 56 858–863

    PubMed  CAS  Google Scholar 

  • Sharak-Genthner, B. R., C. L. Davis, and M. P. Bryant. 1981 Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2-CO2-utilizing species Appl. Environ. Microbiol. 42 12–19

    Google Scholar 

  • Sharak-Genthner, B. R., and M. P. Bryant. 1987 Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii Appl. Environ. Microbiol. 53 471–476

    PubMed  CAS  Google Scholar 

  • Shiba, H., T. Kawasumi, Y. Igarashi, T. Kodama, and Y. Minoda. 1984 Effect of organic-compounds on the growth of an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus tk-6 Agric. Biol. Chem. (Tokyo) 48 2809–2813

    Article  CAS  Google Scholar 

  • Shima, S., and K. I. Suzuki. 1993 Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth Int. J. Syst. Bacteriol. 43 703–708

    Article  Google Scholar 

  • Siefert, E., and N. Pfennig. 1979 Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate Arch. Microbiol. 122 177–182

    Article  CAS  Google Scholar 

  • Silva, P. J., E. C. van den Ban, H. Wassink, H. Haaker, B. de Castro, F. T. Robb, and W. R. Hagen. 2000 Enzymes of hydrogen metabolism in Pyrococcus furiosus Eur. J. Biochem. 267 6541–6551

    Article  PubMed  CAS  Google Scholar 

  • Sim, E., and P. M. Vignais. 1978 Hydrogenase activity in Paracoccus denitrificans. Partial purification and interaction with the electron transport chain Biochimie 60 307–314

    Article  PubMed  CAS  Google Scholar 

  • Skibinski, D. A., P. Golby, Y. S. Chang, F. Sargent, R. Hoffman, R. Harper, J. R. Guest, M. M. Attwood, B. C. Berks, and S. C. Andrews. 2002 Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR J. Bacteriol. 184 6642–6653

    Article  PubMed  CAS  Google Scholar 

  • Slesarev, A. I., K. V. Mezhevaya, K. S. Makarova, N. N. Polushin, O. V. Shcherbinina, V. V. Shakhova, G. I. Belova, L. Aravind, D. A. Natale, I. B. Rogozin, R. L. Tatusov, Y. I. Wolf, K. O. Stetter, A. G. Malykh, E. V. Koonin, and S. A. Kozyavkin. 2002 The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens Proc. Natl. Acad. Sci. USA 99 4644–4649

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. R., L. A. Doucette-Stamm, C. Deloughery, H. Lee, J. Dubois et al. 1997 Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: Functional analysis and comparative genomics J. Bacteriol. 179 7135–7155

    PubMed  CAS  Google Scholar 

  • Soboh, B., D. Linder, and R. Hedderich. 2002 Purification and catalytic properties of a CO-oxidizing: H2-evolving enzyme complex from Carboxydothermus hydrogenoformans Eur. J. Biochem. 269 5712–5721

    Article  PubMed  CAS  Google Scholar 

  • Sorgenfrei, O., S. Müller, M. Pfeiffer, I. Sniezko, and A. Klein. 1997 The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation Arch. Microbiol. 167 189–195

    Article  PubMed  CAS  Google Scholar 

  • Soutschek, E., J. Winter, F. Schindler, and O. Kandler. 1984 Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose Syst. Appl. Microbiol. 5 377–390

    Article  CAS  Google Scholar 

  • Spaink, H. P. 2000 Root nodulation and infection factors produced by rhizobial bacteria Ann. Rev. Microbiol. 54 257–288

    Article  CAS  Google Scholar 

  • Sprott, G. D., K. M. Shaw, and T. J. Beveridge. 1987 Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei Can. J. Microbiol. 33 896–904

    Article  CAS  Google Scholar 

  • Stacey, G., J. Sanjuan, S. Luka, T. Dockendorff, and R. W. Carlson. 1995 Signal exchange in the Bradyrhizobium-soybean symbiosis Soil Biol. Biochem. 27 473–483

    Article  CAS  Google Scholar 

  • Stal, L. J., and R. Moezelaar. 1997 Fermentation in cyanobacteria FEMS Microbiol. Rev. 21 179–211

    Article  CAS  Google Scholar 

  • Stanley, S. H., and H. Dalton. 1982 Role of ribulose-1,5-bisphosphate carboxylase oxygenase in Methylococcus capsulatus (Bath) J. Gen. Microbiol. 128 2927–2935

    CAS  Google Scholar 

  • Stein, M., and W. Lubitz. 2002 Quantum chemical calculations of [NiFe] hydrogenase Curr. Opin. Chem. Biol. 6 243–249

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, M., and L. H. Stickland. 1931 Hydrogenase: a bacterial enzyme activating molecular hydrogen. I: The properties of the enzyme Biochem. J. 25 205–214

    PubMed  CAS  Google Scholar 

  • Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Janecovic, H. König, P. Palm, and S. Wunderl. 1981 Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring Zbl. Bakt. Hyg., I. Abt. Orig. C2 2 166–178

    CAS  Google Scholar 

  • Stetter, K. O., and G. Gaag. 1983a Reduction of molecular sulfur by methanogenic bacteria Nature 305 309–311

    Article  CAS  Google Scholar 

  • Stetter, K. O., H. König, and E. Stackebrandt. 1983b Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur-reducing archaebacteria growing optimally at 105 degrees C Syst. Appl. Microbiol. 4 535–551

    Article  PubMed  CAS  Google Scholar 

  • Stetter, K. O. 1988 Archaeoglobus fulgidus gen. nov., sp. nov.: A new taxon of extremely thermophilic bacteria Syst. Appl. Microbiol. 10 172–173

    Article  Google Scholar 

  • Stetter, K. O., R. Huber, E. Blöchl, M. Kurr, R. D. Eden, M. Fielder, H. Cash, and I. Vance. 1993 Hyperthermophilic archaea are thriving in deep north-sea and Alaskan oil-reservoirs Nature 365 743–745

    Article  Google Scholar 

  • Stieb, M., and B. Schink. 1985 Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-forming, obligately syntrophic bacterium Arch. Microbiol. 140 387–390

    Article  CAS  Google Scholar 

  • Stöhr, R., A. Waberski, H. Volker, B. J. Tindall, and M. Thomm. 2001 Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum “Hydrogenobacter/Aquifex” Int. J. Syst. Evol. Microbiol. 51 1853–1862

    Article  PubMed  Google Scholar 

  • Strayer, R. F., and J. M. Tiedje. 1978 Kinetik parameters of conversion of methane precursors to methane in a hyper-eutrophic lake sediment Appl. Environ. Microbiol. 36 330–340

    PubMed  CAS  Google Scholar 

  • Svetlichny, V. A., T. G. Sokolova, M. Gerhardt, M. Ringpfeil, N. A. Kostrikina, and G. A. Zavarzin. 1991 Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island Syst. Appl. Microbiol. 14 254–260

    Article  Google Scholar 

  • Szilágyi, A., K. L. Kovács, G. Rákhely, and P. Závodszky. 2002 Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe]hydrogenases J. Mol. Model. 8 58–64

    Article  PubMed  CAS  Google Scholar 

  • Tabillion, R., F. Weber, and H. Kaltwasser. 1980 Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria Arch. Microbiol. 124 131–136

    Article  CAS  Google Scholar 

  • Tamagnini, P., R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad. 2002 Hydrogenases and hydrogen metabolism of cyanobacteria Microbiol. Molec. Biol. Rev. 66 1–20

    Article  CAS  Google Scholar 

  • Tanaka, K., and N. Pfennig. 1988 Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus Arch. Microbiol. 149 181–187

    Article  CAS  Google Scholar 

  • Tersteegen, A., and R. Hedderich. 1999 Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins Eur. J. Biochem. 264 930–943

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., A. R. Klein, and G. C. Hartmann. 1996 Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst Chem. Rev. 96 3031–3042

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K. 1998 Biochemistry of methanogenesis: A tribute to Marjory Stephenson Microbiology 144 2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Theodoratou, E., A. Paschos, A. Magalon, E. Fritsche, R. Huber, and A. Böck. 2000a Nickel serves as a substrate recognition motif for the endopeptidase involved in hydrogenase maturation Eur. J. Biochem. 267 1995–1999

    Article  PubMed  CAS  Google Scholar 

  • Theodoratou, E., A. Paschos, S. Mintz-Weber, and A. Böck. 2000b Analysis of the cleavage site specificity of the endopeptidase involved in the maturation of the large subunit of hydrogenase 3 from Escherichia coli Arch. Microbiol. 173 110–116

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann, S., J. Dernedde, M. Bernhard, W. Schroeder, C. Massanz, and B. Friedrich. 1996 Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product J. Bacteriol. 178 2368–2374

    PubMed  CAS  Google Scholar 

  • Toussaint, B., C. Bosc, P. Richaud, A. Colbeau, and P. M. Vignais. 1991 A mutation in a Rhodobacter capsulatus gene encoding an integration host factor-like protein impairs in vivo hydrogenase expression Proc. Natl. Acad. Sci. USA 88 10749–10753

    Article  PubMed  CAS  Google Scholar 

  • Toussaint, B., R. de Sury d’Aspremont, I. Delic-Attree, V. Berchet, S. Elsen, A. Colbeau, W. Dischert, Y. Lazzaroni, and P. M. Vignais. 1997 The Rhodobacter capsulatus hupSLC promoter: identification of cis-regulatory elements and of trans-activating factors involved in H2 activation of hupSLC transcription Molec. Microbiol. 26 927–937

    Article  CAS  Google Scholar 

  • Tran-Betcke, A., U. Warnecke, C. Böcker, C. Zaborosch, and B. Friedrich. 1990 Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16 J. Bacteriol. 172 2920–2929

    PubMed  CAS  Google Scholar 

  • Traore, A. S., C. E. Hatchikian, J. P. Belaich, and J. Le Gall. 1981 Microcalorimetric studies of the growth of sulfate-reducing bacteria: Energetics of Desulfovibrio vulgaris growth J. Bacteriol. 145 191–199

    PubMed  CAS  Google Scholar 

  • Traore, A. S., C. Gaudin, C. E. Hatchikian, J. Le Gall, and J. P. Belaich. 1983 Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Maintenance energy coefficient of the sulfate-reducing organism in the absence and presence of its partner J. Bacteriol. 155 1260–1264

    PubMed  CAS  Google Scholar 

  • Tsai, C. R., J. L. Garcia, B. K. Patel, J. L. Cayol, L. Baresi, and R. A. Mah. 1995 Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah Int. J. Syst. Bacteriol. 45 301–307

    Article  PubMed  CAS  Google Scholar 

  • Tsu, I. I., C. Huang, J. Garcia, B. K. C. Patel, J. L. Cayol, L. Baresi, and R. A. Mah. 1998 Isolation and characterization of Desulfovibrio senezii sp. nov., a halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species Arch. Microbiol. 170 313–317

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, K., and T. Yagi. 1980 Significance of hydrogen burst from growing cultures of of Desulfovibrio vulgaris Miyazaki and the role of hydrogenase and cytochrome c3 in energy production system Arch. Microbiol. 125 35–42

    Article  CAS  Google Scholar 

  • Uffen, R. L., and R. S. Wolfe. 1970 Anaerobic growth of purple nonsulfur bacteria under dark conditions J. Bacteriol. 104 462–472

    PubMed  CAS  Google Scholar 

  • Uffen, R. L. 1973a Effect of low-intensity light on growth response and bacteriochlorophyll concentration in Rhodospirillum rubrum mutant C J. Bacteriol. 116 1086–1088

    PubMed  CAS  Google Scholar 

  • Uffen, R. L. 1973b Growth properties of Rhodospirillum rubrum mutants and fermentation of pyruvate in anaerobic, dart conditions J. Bacteriol. 116 874–884

    PubMed  CAS  Google Scholar 

  • Uffen, R. L. 1976 Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate Proc. Natl. Acad. Sci. USA 73 3298–3302

    Article  PubMed  CAS  Google Scholar 

  • Uffen, R. L. 1981 Metabolism of carbon monoxide Enz. Microb. Technol. 3 197–206

    Article  CAS  Google Scholar 

  • Uffen, R. L., A. Colbeau, P. Richaud, and P. M. Vignais. 1990 Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus Molec. Gen. Genet. 221 49–58

    Article  PubMed  CAS  Google Scholar 

  • Utkin, I., C. Woese, and J. Wiegel. 1994 Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds Int. J. Syst. Bacteriol. 44 612–619

    Article  PubMed  CAS  Google Scholar 

  • van Bruggen, J. J. A., K. B. Zwart, R. M. Vanassema, C. K. Stumm, and G. D. Vogels. 1984 Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich Arch. Microbiol. 139 1–7

    Article  Google Scholar 

  • van Bruggen, J. J. A., K. B. Zwart, J. G. F. Hermans, E. M. van Hove, C. K. Stumm, and G. D. Vogels. 1986 Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt Arch. Microbiol. 144 367–374

    Article  Google Scholar 

  • van der Oost, J., B. A. Bulthuis, S. Feitz, K. Krab, and R. Kraayenhof. 1989 Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC7822 Arch. Microbiol. 152 415–419

    Article  Google Scholar 

  • van der Werf, A. N., and M. G. Yates. 1978 Hydrogenase from nitrogen fixing Azotobacter chroococcum In: H. G. Schlegel and K. Schneider (Eds.) Hydrogenases: Their Catalytic Activity, Structure and Function Goltze Göttingen, Germany 307–326

    Google Scholar 

  • van der Westen, H. M., S. G. Mayhew, and C. Veeger. 1978 Separation of hydrogenase from intact cells of Desulfovibrio vulgaris: Purification and properties FEBS Lett. 86 122–126.

    Article  PubMed  Google Scholar 

  • van der Zwaan, J. W., J. M. Coremans, E. C. Bouwens, and S. P. Albracht. 1990 Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum Biochim. Biophys. Acta 1041 101–110

    Article  PubMed  Google Scholar 

  • Van Dijk, C., S. G. Mayhew, H. J. Grande, and C. Veeger. 1979 Purification and properties of hydrogenase from Megasphaera elsdenii Eur. J. Biochem. 102 317–330

    Article  PubMed  Google Scholar 

  • van Dongen, W., W. Hagen, W. van den Berg, and C. Veeger. 1988 Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli FEMS Microbiol. Lett. 50 5–9

    Article  Google Scholar 

  • Van Praag, E., R. Degli Agosti, and R. Bachofen. 2000 Rhythmic activity of uptake hydrogenase in the prokaryote Rhodospirillum rubrum J. Biol. Rhythms 15 218–224

    Article  PubMed  Google Scholar 

  • van Rhijn, P., and J. Vanderleyden. 1995 The Rhizobium-plant symbiosis Microbiol. Rev. 59 124–142

    PubMed  Google Scholar 

  • Van Soom, C., C. Verreth, M. J. Sampaio, and J. Vanderleyden. 1993 Identification of a potential transcriptional regulator of hydrogenase activity in free-living Bradyrhizobium japonicum strains Molec. Gen. Genet. 239 235–240

    PubMed  Google Scholar 

  • Vasconcelos, I., L. Girbal, and P. Soucaille. 1994 Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol J. Bacteriol. 176 1443–1450

    PubMed  CAS  Google Scholar 

  • Vaupel, M., and R. K. Thauer. 1998 Two F420-reducing hydrogenases in Methanosarcina barkeri Arch. Microbiol. 169 201–205

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, M. F., T. O’Rourke, and M. W. Adams. 1999 The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization Biochim. Biophys. Acta 1412 212–229

    Article  PubMed  CAS  Google Scholar 

  • Vignais, P. M., A. Colbeau, J. C. Willison, and Y. Jouanneau. 1985 Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria Adv. Microb. Physiol. 26 155–234

    Article  PubMed  CAS  Google Scholar 

  • Vignais, P. M., and B. Toussaint. 1994 Molecular biology of membrane-bound H2 uptake hydrogenases Arch. Microbiol. 161 1–10

    PubMed  CAS  Google Scholar 

  • Vignais, P. M., B. Dimon, N. A. Zorin, A. Colbeau, and S. Elsen. 1997 HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction J. Bacteriol. 179 290–292

    PubMed  CAS  Google Scholar 

  • Vignais, P. M., B. Dimon, N. A. Zorin, M. Tomiyama, and A. Colbeau. 2000 Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus J. Bacteriol. 182 5997–6004

    Article  PubMed  CAS  Google Scholar 

  • Vignais, P. M., B. Billoud, and J. Meyer. 2001 Classification and phylogeny of hydrogenases FEMS Microbiol. Rev. 25 455–501

    PubMed  CAS  Google Scholar 

  • Voelskow, H., and G. Schön. 1980 H2 production of Rhodospirillum rubrum during adaptation to anaerobic dark conditions Arch. Microbiol. 125 245–249

    Article  CAS  Google Scholar 

  • Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps. 1995 Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas Nature 373 580–587

    Article  PubMed  CAS  Google Scholar 

  • Volbeda, A., E. Garcia, C. Piras, A. L. deLacey, V. M. Fernandez, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps. 1996 Structure of the [NiFe] hydrogenase active site: Evidence for biologically uncommon Fe ligands J. Am. Chem. Soc. 118 12989–12996

    Article  CAS  Google Scholar 

  • Völkl, P., R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, and K. O. Stetter. 1993 Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum Appl. Environ. Microbiol. 59 2918–2926

    PubMed  Google Scholar 

  • Voordouw, G., and S. Brenner. 1985 Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) Eur. J. Biochem. 148 515–520

    Article  PubMed  CAS  Google Scholar 

  • Voordouw, G., N. K. Menon, J. LeGall, E. S. Choi, H. D. Peck, and A. E. Przybyla. 1989 Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus J. Bacteriol. 171 2894–2899

    PubMed  CAS  Google Scholar 

  • Voordouw, G. 1992 Evolution of hydrogenase genes Adv. Inorg. Chem. 38 397–423

    Article  CAS  Google Scholar 

  • Voordouw, G. 1995 The genus Desulfovibrio: The centennial Appl. Environ. Microbiol. 61 2813–2819

    PubMed  CAS  Google Scholar 

  • Voordouw, G. 2000 A universal system for the transport of redox proteins: Early roots and latest developments Biophys. Chem. 86 131–140

    Article  PubMed  CAS  Google Scholar 

  • Vosjan, J. H. 1975 Respiration and fermentation of sulfate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture Plant Soil 43 141–152

    Article  CAS  Google Scholar 

  • Wächtershäuser, G. 1988 Pyrite formation, the first energy-source for life—a hypothesis Syst. Appl. Microbiol. 10 207–210

    Article  Google Scholar 

  • Wächtershäuser, G. 1990 The case for the chemoautotrophic origin of life in an iron-sulfur world Orig. Life Evol. Biosph. 20 173–176

    Article  Google Scholar 

  • Wächtershäuser, G. 1992 Groundworks for an evolutionary biochemistry: The iron-sulphur world Prog. Biophys. Molec. Biol. 58 85–201

    Article  Google Scholar 

  • Walker, J. C. G. 1977 Evolution of the Atmosphere Macmillan New York, NY

    Google Scholar 

  • Wallrabenstein, C., E. Hauschild, and B. Schink. 1994 Pure culture and cytological properties of “Syntrobacter wolinii” FEMS Microbiol. Lett. 123 249–254

    Article  CAS  Google Scholar 

  • Wallrabenstein, C., E. Hauschild, and B. Schink. 1995 Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate Arch. Microbiol. 164 346–352

    Article  CAS  Google Scholar 

  • Waugh, R., and D. H. Boxer. 1986 Pleiotropic hydrogenase mutants of Escherichia coli K12: Growth in the presence of nickel can restore hydrogenase activity Biochimie 68 157–166

    Article  PubMed  CAS  Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1978 Acetate metabolism in Methanosarcina barkeri Arch. Microbiol. 119 175–182

    Article  PubMed  CAS  Google Scholar 

  • Weiner, J. H., P. T. Bilous, G. M. Shaw, S. P. Lubitz, L. Frost, G. H. Thomas, J. A. Cole, and R. J. Turner. 1998 A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins Cell 93 93–101

    Article  PubMed  CAS  Google Scholar 

  • Wertlieb, D., and W. Vishniac. 1967 Methane utilization by a strain of Rhodopseudomonas gelatinosa J. Bacteriol. 93 1722–1724

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1980 Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte arten sulfat-reduzierender Bakterien Ph. D. thesis. Universität Göttingen, Germany

    Google Scholar 

  • Widdel, F., G. W. Kohring, and F. Mayer. 1983 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids.3: Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov Arch. Microbiol. 134 286–294

    Article  CAS  Google Scholar 

  • Widdel, F. 1987 New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov Arch. Microbiol. 148 286–291

    Article  CAS  Google Scholar 

  • Widdel, F. 1988a Microbiology and ecology of sulfate-and sulfur-reducing bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley New York, NY 469–585

    Google Scholar 

  • Widdel, F., P. E. Rouviere, and R. S. Wolfe. 1988b Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate Arch. Microbiol. 150 477–481

    Article  CAS  Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981 Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide Curr. Microbiol. 5 255–260

    Article  CAS  Google Scholar 

  • Wilde, E. 1962 Studies on growth and synthesis of reserves of Hydrogenomonas [in Russian] Arch. Mikrobiol. 43 109–137

    Article  CAS  Google Scholar 

  • Wildgruber, G., M. Thomm, H. König, K. Ober, T. Ricchiuto, and K. O. Stetter. 1982 Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae Arch. Microbiol. 132 31–36

    Article  CAS  Google Scholar 

  • Willems, A., J. Busse, M. Goor, B. Pot, E. Falsen, E. Jantzen, B. Hoste, M. Gillis, K. Kersters, G. Auling, and J. Deley. 1989 Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb-nov (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and Pseudomonas carboxydoflava), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis) Int. J. Syst. Bacteriol. 39 319–333

    Article  CAS  Google Scholar 

  • Willems, A., E. Falsen, B. Pot, E. Jantzen, B. Hoste, P. Vandamme, M. Gillis, K. Kersters, and J. Deley. 1990 Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, e-falsen (ef) group 13, ef group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov Int. J. Syst. Bacteriol. 40 384–398

    Article  PubMed  CAS  Google Scholar 

  • Willison, J. C., Y. Jouanneau, A. Colbeau, and P. M. Vignais. 1983 H2 metabolism in photosynthetic bacteria and relationship to N2 fixation Ann. Microbiol. (Paris) 134B 115–135

    CAS  Google Scholar 

  • Windberger, E., R. Huber, A. Trincone, H. Fricke, and K. O. Stetter. 1989 Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs Arch. Microbiol. 151 506–512

    Article  CAS  Google Scholar 

  • Winfrey, M. R., and J. G. Zeikus. 1977 Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments Appl. Environ. Microbiol. 33 275–281

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., D. R. Nelson, S. C. Klevickis, and J. G. Zeikus. 1977 Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments Appl. Environ. Microbiol. 33 312–318

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and D. M. Ward. 1983 Substrates for sulfate reduction and methane production in intertidal sediments Appl Environ. Microbiol. 45 193–199

    PubMed  CAS  Google Scholar 

  • Winkler, M., B. Heil, B. Heil, and T. Happe. 2002 Isolation and molecular characterization of the [FeFe]-hydrogenase from the unicellular green alga Chlorella fusca Biochim. Biophys. Acta 1576 330–334

    Article  PubMed  CAS  Google Scholar 

  • Winogradsky, S. N. 1888 Zur Morphologie und Physiologie der Schwefelbakterien Felix, Leipzig

    Google Scholar 

  • Wolf, I., T. Buhrke, J. Dernedde, A. Pohlmann, and B. Friedrich. 1998 Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16 Arch. Microbiol. 170 451–459

    Article  PubMed  CAS  Google Scholar 

  • Wolin, M. J., E. A. Wolin, and N. J. Jacobs. 1961 Cytochrome-producing anaerobic Vibrio, Vibrio succinogenes, sp. n J. Bacteriol. 81 911–917

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. 1976 Interactions between H2-producing and methane-producing species In: H. G. Schlegel, G. Gottschalk, and N. Pfennig (Eds.) Microbial production and utilization of gases E. Goltze Göttingen, Germany 14–15

    Google Scholar 

  • Wolin, M. J. 1982 Hydrogen transfer in microbial communities In: A. T. Bull and J. H. Slater (Eds.) Microbial interactions and communities Academic Press London, England 323–356

    Google Scholar 

  • Wong, T. Y., and R. J. Maier. 1985 H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii J. Bacteriol. 163 528–533

    PubMed  CAS  Google Scholar 

  • Worakit, S., D. R. Boone, R. A. Mah, M. E. Abdelsamie, and M. M. Elhalwagi. 1986 Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values Int. J. Syst. Bacteriol. 36 380–382

    Article  Google Scholar 

  • Wu, L. F., M. A. Mandrand-Berthelot, R. Waugh, C. J. Edmonds, S. E. Holt, and D. H. Boxer. 1989 Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli Molec. Microbiol. 3 1709–1718

    Article  CAS  Google Scholar 

  • Wu, L. F., and M. A. Mandrand. 1993 Microbial hydrogenases: primary structure, classification, signatures and phylogeny FEMS Microbiol. Rev. 10 243–269

    PubMed  CAS  Google Scholar 

  • Wu, L. F., A. Chanal, and A. Rodrigue. 2000 Membrane targeting and translocation of bacterial hydrogenases Arch. Microbiol. 173 319–24

    Article  PubMed  CAS  Google Scholar 

  • Wünschiers, R., K. Stangier, H. Senger, and R. Schulz. 2001 Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus Curr. Microbiol. 42 353–360

    Article  PubMed  Google Scholar 

  • Yagi, T. 1970 Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris J. Biochem. (Tokyo) 68 649–657

    CAS  Google Scholar 

  • Yamazaki, S. 1982 A selenium-containing hydrogenase from Methanococcus vannielii J. Biol. Chem. 257 7926–7929

    PubMed  CAS  Google Scholar 

  • Yang, K., and W. W. Metcalf. 2004 A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase Proc. Natl. Acad. Sci. USA 101 7919–7924

    Article  PubMed  CAS  Google Scholar 

  • Yates, M. G., E. M. De Souza, and J. H. Kahindi. 1997 Oxygen, hydrogen and nitrogen fixation in Azotobacter Soil Biol. Biochem. 29 863–869

    Article  CAS  Google Scholar 

  • Yen, H. C., and B. Marrs. 1977 Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide Arch. Biochem. Biophys. 181 411–418

    Article  PubMed  CAS  Google Scholar 

  • Zeikus, J. G., and D. L. Henning. 1975 Methanobacterium arbophilicum sp.nov. An obligate anaerobe isolated from wetwood of living trees Ant. v. Leeuwenhoek 41 543–552

    Article  CAS  Google Scholar 

  • Zellner, G., E. Stackebrandt, P. Messner, B. J. Tindall, E. Conway de Macario, H. Kneifel, U. B. Sleytr, and J. Winter. 1989 Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov Arch. Microbiol. 151 381–390

    Article  PubMed  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990 A new extremely halophilic homoacetogen bacteria Acethalobium arabaticum, gen. nov., sp. nov. [in|Russian] Dokl. Akad. Nauk. SSSR 311 745–747

    CAS  Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, F. A. Rainey, E. N. Pikuta, G. A. Osipov, and N. A. Kostrikina. 1997 Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium Int. J. Syst. Bacteriol. 47 144–149

    Article  PubMed  CAS  Google Scholar 

  • Zillig, W., K. O. Stetter, W. Schafer, D. Janekovic, S. Wunderl, I. Holz, and P. Palm. 1981 Thermoproteales—a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras Zbl. Bakt. Hyg., I. Abt. Orig. C 2 205–227

    CAS  Google Scholar 

  • Zillig, W., I. Holz, D. Janekovic, W. Schafer, and W. D. Reiter. 1983 The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria Syst. Appl. Microbiol. 4 88–94

    Article  PubMed  CAS  Google Scholar 

  • Zillig, W., I. Holz, H. P. Klenk, J. Trent, S. Wunderl, D. Janekovic, E. Imsel, and B. Haas. 1987 Pyrococcus woesei, sp. nov, an ultra-thermophilic marine archaebacterium, representing a novel order Syst. Appl. Microbiol. 9 62–70

    Article  CAS  Google Scholar 

  • Zillig, W., I. Holz, D. Janekovic, H. P. Klenk, E. Imsel, J. Trent, S. Wunderl, V. H. Forjaz, R. Coutinho, and T. Ferreira. 1990 Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides J. Bacteriol. 172 3959–3965

    PubMed  CAS  Google Scholar 

  • Zimmer, D., E. Schwartz, A. Tran-Betcke, P. Gewinner, and B. Friedrich. 1995 Temperature tolerance of hydrogenase expression in Alcaligenes eutrophus is conferred by a single amino acid exchange in the transcriptional activator HoxA J. Bacteriol. 177 2373–2380

    PubMed  CAS  Google Scholar 

  • Zimmerman, P. R., J. P. Greenberg, S. O. Wandiga, and P. J. Crutzen. 1982 Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen Science 218 563–565

    Article  PubMed  CAS  Google Scholar 

  • Zirngibl, C., R. Hedderich, and R. K. Thauer. 1990 N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity FEBS Lett. 261 112–116

    Article  CAS  Google Scholar 

  • Zorin, N. A., and I. N. Gogotov. 1975 Hydrogenase activity in Thiocapsa roseopersicina according to the D2-H2O metabolic reaction [in Russian] Biokhimiia 40 192–195

    PubMed  CAS  Google Scholar 

  • Zorin, N. A., M. Medina, M. A. Pusheva, I. N. Gogotov, and R. Cammack. 1996 Hydrogenase from the thermophilic bacterium Thermococcus stetteri: Isolation and characterisation of EPR-detectable redox centres FEMS Microbiol. Lett. 142 71–76

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Schwartz, E., Friedrich, B. (2006). The H2-Metabolizing Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_17

Download citation

Publish with us

Policies and ethics