Skip to main content

Inhibition of Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahimtula, A.D. and P.J. O’Brien (1977). The peroxidase nature of cytochrome P450. In V. Ullrich, I. Roots, A. Hildebrandt, R.W. Estabrook, and A.H. Conney (eds.), Microsomes and Drug Oxidations, Pergamon Press, Elmsford, NY, pp. 210–217.

    Google Scholar 

  2. Rodrigues, A.D., D. Fernandez, M.A. Nosarzewski, W.M. Pierce, and R.A. Prough (1991). Inhibition of hepatic microsomal cytochrome P-450 dependent monooxygenation activity by the antioxidant 3-tert-butyl-4-hydroxyanisole. Chem. Res. Toxicol. 4, 281–289.

    Article  PubMed  CAS  Google Scholar 

  3. Kharasch, E.D., N.K. Wendel, and R.F. Novak (1987). Anthracenedione antineoplastic agent effects on drug metabolism in vitro and in vivo: Relationship between structure and mechanism of inhibition. Fundam. Appl. Toxicol. 9, 18–25.

    Article  PubMed  CAS  Google Scholar 

  4. Testa, B. and P. Jenner (1981). Inhibitors of cytochrome P-450s and their mechanism of action. Drug. Metab. Rev. 12, 1–117.

    PubMed  CAS  Google Scholar 

  5. Correia, M.A., and P.R. Ortiz de Montellano (1993). Inhibitors of cytochrome P450 and possibilities for their therapeutic application. In K. Ruckpaul (ed.), Frontiers in Biotransformation. Akademie-Verlag, Berlin, pp. 74–146.

    Google Scholar 

  6. Murray, M. and G.F. Reidy (1990). Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents. Pharmacol. Rev. 42, 85–101.

    PubMed  CAS  Google Scholar 

  7. Ortiz de Montellano, P.R. (1988). Suicide substrates for drug metabolizing enzymes: Mechanism and biological consequences. In G.G. Gibson (ed.), Progress in Drug Metabolism. Taylor and Francis, New York, pp. 99–148.

    Google Scholar 

  8. Vanden Bossche, H. (1992). Inhibitors of P450-dependent steroid biosynthesis: From research to medical treatment. J. Steroid Biochem. Mol. Biol. 43, 1003–1021.

    Article  CAS  Google Scholar 

  9. Rendic, S. and F.J. Di Carlo (1997). Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29, 413–580.

    PubMed  CAS  Google Scholar 

  10. Lewis, D.F. (2003). Human cytochromes P450 associated with the Phase 1 metabolism of drugs and other xenobiotics: A compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem. 10, 1955–1972.

    Article  PubMed  CAS  Google Scholar 

  11. Kent, U.M., M.I. Juschyshyn, and P.F. Hollenberg (2001). Mechanism-based inactivators as probes of cytochrome P450 structure and function. Curr. Drug Metab. 2, 215–243.

    Article  PubMed  CAS  Google Scholar 

  12. Brueggemeier, R.W. (2002). Aromatase inhibitors in breast cancer therapy. Expert Rev. Anticancer Ther. 2, 181–191.

    Article  PubMed  CAS  Google Scholar 

  13. Sato, A. and T. Nakajima (1979). Dose-dependent metabolic interaction between benzene and toluene in vivo and in vitro. Toxicol. Appl. Pharmacol. 48, 249–256.

    Article  PubMed  CAS  Google Scholar 

  14. Watkins, P.B. (1990). Role of cytochromes P450 in drug metabolism and hepatotoxicity. Semin. Liver Dis. 10, 235–250.

    PubMed  CAS  Google Scholar 

  15. Jefcoate, C.R. (1978). Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Meth. Enzymol. 52, 258–279.

    PubMed  CAS  Google Scholar 

  16. Kumaki, K., M. Sato, H. Kon, and D.W. Nebert (1978). Correlation of type I, type II, and reverse type I difference spectra with absolute changes in spin state of hepatic microsomal cytochrome P-450 iron from five mammalian species. J. Biol. Chem. 253, 1048–1058.

    PubMed  CAS  Google Scholar 

  17. Schenkman, J.B., S.G. Sligar, and D.L. Cinti (1981). Substrate interactions with cytochrome P-450. Pharmacol. Ther. 12, 43–71.

    Article  PubMed  CAS  Google Scholar 

  18. Sligar, S.G., D.L. Cinti, G.G. Gibson, and J.B. Schenkman (1979). Spin state control of the hepatic cytochrome P-450 redox potential. Biochem. Biophys. Res. Commun. 90, 925–932.

    Article  PubMed  CAS  Google Scholar 

  19. Guengerich, F. P. (1983). Oxidation-reduction properties of rat liver cytochromes P450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry 22, 2811–2820.

    Article  PubMed  CAS  Google Scholar 

  20. Kitada, M., K. Chiba, T. Kamataki. and H. Kitagawa (1977). Inhibition by cyanide of drug oxidations in rat liver microsomes. Jpn. J. Pharmacol. 27, 601–608.

    PubMed  CAS  Google Scholar 

  21. Ho, B. and N. Castagnoli (1980). Trapping of metabolically generated electrophilic species with cyanide ion: Metabolism of 1-benzylpyrrolidine. J. Med. Chem. 23, 133–139.

    Article  PubMed  CAS  Google Scholar 

  22. Sono, M. and J.H. Dawson (1982). Formation of low spin complexes of ferric cytochrome P-450-CAM with anionic ligands: Spin state and ligand affinity comparison to myoglobin. J. Biol. Chem. 257, 5496–5502.

    PubMed  CAS  Google Scholar 

  23. Backes, W.L., M. Hogaboom, and W.J. Canady (1982). The true hydrophobicity of microsomal cytochrome P-450 in the rat: Size dependence of the free energy of binding of a series of hydrocarbon substrates from the aqueous phase to the enzyme and to the membrane as derived from spectral binding data. J. Biol. Chem. 257, 4063–4070.

    PubMed  CAS  Google Scholar 

  24. Wink, D.A., Y. Osawa, J.F. Darbyshe, C.R. Jones, S.C. Eshenaur, and R.W. Nims (1993). Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch. Biochem. Biophys. 300, 115–123.

    Article  PubMed  CAS  Google Scholar 

  25. Khatsenko, O.G., S.S. Gross, A.B. Rifkind, and J.R. Vane (1993). Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc. Natl. Acad. Sci. USA 90, 11147–11151.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, Y.-M., H.A. Bergonia, C. Müller, B.R. Pitt, W.D. Watkins, and J.R. Lancaster, Jr. (1995). Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol. Chem. 270, 5710–5713.

    Article  PubMed  CAS  Google Scholar 

  27. Alonso-Galicia, M., H. Drummond, K. Reddy, J. Falck, and R. Roman (1997). Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide. Hypertension 29, 320–325.

    PubMed  CAS  Google Scholar 

  28. Drewett, J.G., R.L. Adams-Hays, B.Y. Ho, and D.J. Hegge (2002). Nitric oxide potently inhibits the rate-limiting enzymatic step in steroidogenesis. Mol. Cell. Endocrinol. 194, 39–50.

    Article  PubMed  CAS  Google Scholar 

  29. Hanson, L.K., W.A. Eaton, S.G. Sligar, I.C. Gunsalus, M. Gouterman, and C.R. Connell (1976). Origin of the anomalous Soret spectra of carboxycytochrome P450. J. Am. Chem. Soc. 98, 2672–2674.

    Article  PubMed  CAS  Google Scholar 

  30. Omura, T. and R. Sato (1964). The carbon monoxide-binding pigment of liver microsomes. 1. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370–2378.

    PubMed  CAS  Google Scholar 

  31. Collman, J.P. and T.N. Sorrell (1975). A model for the carbonyl adduct of ferrous cytochrome P-450. J. Am. Chem. Soc. 97, 4133–4134.

    Article  PubMed  CAS  Google Scholar 

  32. Leeman, T., P. Bonnabry, and P. Dayer (1994). Selective inhibition of major drug metabolizing cytochrome P450 isozymes in human liver microsomes by carbon monoxide. Life Sci. 54, 951–956.

    Article  Google Scholar 

  33. Canick, J.A. and K.J. Ryan (1976). Cytochrome P-450 and the aromatization of 16-alpha-hydroxy-testosterone and androstenedione by human placental microsomes. Mol. Cell. Endocrinol. 6, 105–115.

    Article  PubMed  CAS  Google Scholar 

  34. Gibbons, G.F., C.R. Pullinger, and K.A. Mitropoulos (1979). Studies on the mechanism of lanosterol 14-alpha-demethylation: A requirement for two distinct types of mixed-function-oxidase systems. Biochem. J. 183, 309–315.

    PubMed  CAS  Google Scholar 

  35. Hansson, R. and K. Wikvall (1982). Hydroxylations in biosynthesis of bile acids: Cytochrome P-450 LM4 and 12α-hydroxylation of 5β-cholestane-3α,7α-diol. Eur. J. Biochem. 125, 423–429.

    Article  PubMed  CAS  Google Scholar 

  36. Meigs, R.A. and K.J. Ryan (1971). Enzymatic aromatization of steroids. I. Effects of oxygen and carbon monoxide on the intermediate steps of estrogen biosynthesis. J. Biol. Chem. 246, 83–87.

    PubMed  CAS  Google Scholar 

  37. Zachariah, P.K. and M.R. Juchau (1975). Interactions of steroids with human placental cytochrome P-450 in the presence of carbon monoxide. Life Sci. 16, 1689–1692.

    Article  PubMed  CAS  Google Scholar 

  38. Tuckey, R.C. and H. Kamin (1983). Kinetics of O2 and CO binding to adrenal cytochrome P-450scc: Effect of cholesterol, intermediates, and phosphatidylcholine vesicles. J. Biol. Chem. 258, 4232–4237.

    PubMed  CAS  Google Scholar 

  39. Cohen, G.M. and G.J. Mannering (1972). Involvement of a hydrophobic site in the inhibition of the microsomal para-hydroxylation of aniline by alcohols. Mol. Pharmacol. 8, 383–397.

    Google Scholar 

  40. Gerber, M.C., G.A Tejwani, N. Gerber, and J.R. Bianchine (1985). Drug interactions with cimetidine: An update. Pharmacol. Ther. 27, 353–370.

    Article  PubMed  CAS  Google Scholar 

  41. Testa, B. (1981). Structural and electronic factors influencing the inhibition of aniline hydroxylation by alcohols and their binding to cytochrome P-450. Chem. Biol. Interact. 34, 287–300.

    Article  PubMed  CAS  Google Scholar 

  42. Wattenberg, L.W., L.K.T. Lam, and A.V. Fladmoe, (1979). Inhibition of chemical carcinogen-induced neoplasia by coumarins and alpha-angelicalactone. Cancer Res. 39, 1651–1654.

    PubMed  CAS  Google Scholar 

  43. Remmer, H., J. Schenkman, R.W. Estabrook, H. Sasame, J. Gillette, S. Narasimhulu et al. (1966). Drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 2, 187–190.

    PubMed  CAS  Google Scholar 

  44. Jefcoate, C.R., J.L. Gaylor, and R.L. Callabrese (1969). Ligand interactions with cytochrome P-450. 1. Binding of primary amines. Biochemistry 8, 3455–3463.

    Article  PubMed  CAS  Google Scholar 

  45. Schenkman, J.B., H Remmer, and R.W. Estabrook (1967). Spectral studies of drug interaction with hepatic microsomal cytochrome P-450. Mol. Pharmacol. 3, 113–123.

    CAS  Google Scholar 

  46. Dominguez, O.V. and L.T. Samuels (1963). Mechanism of inhibition of adrenal steroid 11-betahydroxylase by methopyrapone (metopirone). Endocrinology 73, 304–309.

    PubMed  CAS  Google Scholar 

  47. Temple, T.E. and G.W. Liddle (1970). Inhibitors of adrenal steroid biosynthesis. Ann. Rev. Pharmacol. 10, 199–218.

    Article  PubMed  CAS  Google Scholar 

  48. Rogerson, T.D., C.F. Wilkinson, and K. Hetarski (1977). Steric factors in the inhibitory interaction of imidazoles with microsomal enzymes. Biochem. Pharmacol. 26, 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  49. Wilkinson, C.F., K Hetarski, G.P. Cantwell, and F.J. DiCarlo (1974). Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. Biochem. Pharmacol. 23, 2377–2386.

    Article  PubMed  CAS  Google Scholar 

  50. Duquette, P.H., R.R. Erickson, and J.L. Holtzman (1983). Role of substrate lipophilicity on the N-demethylation and type I binding of 3-O-alkylmorphine analogues. J. Med. Chem. 26, 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  51. Smith, S.R. and M.J. Kendall (1988). Ranitidine versus cimetidine. A comparison of their potential to cause clinically important drug interactions. Clin. Pharmacokinet. 15, 44–56.

    PubMed  CAS  Google Scholar 

  52. Ator, M.A. and Ortiz P.R. de Montellano (1990). Mechanism-based (suicide) enzyme inactivation. In D.S. Sigman and P.D. Boyer (eds.), The Enzymes: Mechanisms of Catalysis, Vol. 19, 3rd edn., Academic Press, New York, pp. 214–282.

    Google Scholar 

  53. Silverman, R.B. (1988). Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology. CRC Press, Boca Raton, FL.

    Google Scholar 

  54. Dalvi, R.R. (1987). Cytochrome P-450-dependent covalent binding of carbon disulfide to rat liver microsomal protein in vitro and its prevention by reduced glutathione. Arch. Toxicol. 61, 155–157.

    Article  PubMed  CAS  Google Scholar 

  55. De Matteis, F.A. and A.A. Seawright (1973). Oxidative metabolism of carbon disulphide by the rat: Effect of treatments which modify the liver toxicity of carbon disulphide. Chem. Biol. Interact. 7, 375–388.

    Article  PubMed  Google Scholar 

  56. Bond, E.J. and F.A. De Matteis (1969). Biochemical changes in rat liver after administration of carbon disulphide, with particular reference to microsomal changes. Biochem. Pharmacol. 18, 2531–2549.

    Article  PubMed  CAS  Google Scholar 

  57. Halpert, J., D. Hammond, and R.A. Neal (1980). Inactivation of purified rat liver cytochrome P-450 during the metabolism of parathion (diethyl p-nitrophenyl phosphorothionate). J. Biol. Chem. 255, 1080–1089.

    PubMed  CAS  Google Scholar 

  58. Neal, R.A., T Kamataki, M. Lin, K.A. Ptashne, R. Dalvi, and R.Y. Poore (1977). Studies of the formation of reactive intermediates of parathion. In D.J. Jollow, J.J. Koesis, R. Snyder, and H. Vaino (eds.), Biological Reactive Intermediates. Plenum Press, New York, pp. 320–332.

    Google Scholar 

  59. Miller, G.E., M.A. Zemaitis, and F.E. Greene (1983). Mechanisms of diethyldithiocarbamateinduced loss of cytochrome P-450 from rat liver. Biochem. Pharmacol. 32, 2433–2442.

    Article  PubMed  CAS  Google Scholar 

  60. El-hawari, A.M. and G.L. Plaa (1979). Impairment of hepatic mixed-function oxidase activity by alpha-and beta-naphthylisothiocyanate: Relationship to hepatotoxicity. Toxicol. Appl. Pharmacol. 48, 445–458.

    Article  PubMed  CAS  Google Scholar 

  61. Lee, P.W., T Arnau, and R.A. Neal (1980). Metabolism of alpha-naphthylthiourea by rat liver and rat lung microsomes. Toxicol. Appl. Pharmacol. 53, 164–173.

    Article  PubMed  CAS  Google Scholar 

  62. Lopez-Garcia, M.P., P.M. Dansette, and D. Mansuy (1993). Thiophene derivatives as new mechanism-based inhibitors of cytochromes P450: Inactivation of yeast-expressed human liver P450 2C9 by tienilic acid. Biochemistry 33, 166–175.

    Article  Google Scholar 

  63. Lopez-Garcia, M.P., P.M. Dansette, P. Valadon, C. Amar, P.H. Beaune, F.P. Guengerich et al. (1993). Human liver P450s expressed in yeast as tools for reactive metabolite formation studies: Oxidative activation of tienilic acid by P450 2C9 and P450 2C10. Eur. J. Biochem. 213, 223–232.

    Article  PubMed  CAS  Google Scholar 

  64. Menard, R.H., T.M Guenthner, A.M. Taburet, H. Kon, L.R. Pohl, J.R. Gillette et al. (1979). Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosterols. Mol. Pharmacol. 16, 997–1010.

    PubMed  CAS  Google Scholar 

  65. Kossor, D.C., S Kominami, S. Takemori, and H.D. Colby (1991). Role of the steroid 17α-hydroxylase in spironolactone-mediated destruction of adrenal cytochrome P-450. Mol. Pharmacol. 40, 321–325.

    PubMed  CAS  Google Scholar 

  66. Decker, C., K. Sugiyama, M. Underwood, and M.A. Correia (1986). Inactivation of rat hepatic cytochrome P-450 by spironolactone. Biochem. Biophys. Res. Commun. 136, 1162–1169.

    Article  PubMed  CAS  Google Scholar 

  67. Decker, C.J., M.S. Rashed, T.A. Baillie, D. Maltby, and M.A. Correia (1989). Oxidative metabolism of spironolactone: Evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450. Biochemistry 28, 5128–5136.

    Article  PubMed  CAS  Google Scholar 

  68. Menard, R.H., T.M. Guenthner, H. Kon, and J.R. Gillette (1979). Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone: Requirement for the 7-alpha-thio group and evidence for the loss of the heme and apoproteins of cytochrome P-450. J. Biol. Chem. 254, 1726–1733.

    PubMed  CAS  Google Scholar 

  69. Sherry, J.H., J.P. O’Donnell, L. Flowers, L.B. Lacagnin, and H.D. Colby (1986). Metabolism of spironolactone by adrenocortical and hepatic microsomes: Relationship to cytochrome P-450 destruction. J. Pharmacol. Exp. Ther. 236, 675–680.

    PubMed  CAS  Google Scholar 

  70. Colby, H.D., J.P. O’Donnell, N. Lynn, D.C. Kossor, P.B. Johnson, and M. Levitt (1991). Relationship between covalent binding to microsomal protein and the destruction of adrenal cytochrome P-450 by spironolactone. Toxicology 67, 143–154.

    Article  PubMed  CAS  Google Scholar 

  71. Decker, C.J., J.R. Cashman, K. Sugiyama, D. Maltby, and M.A. Correia (1991). Formation of glutathionyl-spironolactone disulfide by rat liver cytochromes P450 or hog live flavin-containing monooxygenases: A functional probe of two-electron oxidations of the thiosteroid? Chem. Res. Toxicol. 4, 669–677.

    Article  PubMed  CAS  Google Scholar 

  72. Halpert, J. and R.A. Neal (1980). Inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Mol. Pharmacol. 17, 427–434.

    PubMed  CAS  Google Scholar 

  73. Halpert, J. (1982). Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Mol. Pharmacol. 21, 166–172.

    PubMed  CAS  Google Scholar 

  74. Halpert, J. (1981). Covalent modification of lysine during the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol. Biochem. Pharmacol. 30, 875–881.

    Article  PubMed  CAS  Google Scholar 

  75. Halpert, J., B. Naslund, and I. Betner (1983). Suicide inactivation of rat liver cytochrome P-450 by chloramphenicol in vivo and in vitro. Mol. Pharmacol. 23, 445–452.

    PubMed  CAS  Google Scholar 

  76. Halpert, J., C. Balfour, N.E. Miller, and L.S. Kaminsky (1986). Dichloromethyl compounds as mechanism-based inactivators of rat liver cytochromes P450 in vitro. Mol. Pharmacol. 30, 19–24.

    PubMed  CAS  Google Scholar 

  77. Halpert, J., J.-Y. Jaw, C. Balfour, and L.S. Kaminsky (1990). Selective inactivation by chlorofluoroacetamides of the major phenobarbital-inducible form(s) of rat liver cytochrome P-450. Drug Metab. Dispos. 18, 168–174.

    PubMed  CAS  Google Scholar 

  78. CaJacob, C.A., W. Chan, E. Shephard, and P.R. Ortiz de Montellano (1988). The catalytic site of rat hepatic lauric acid ω-hydroxylase. Protein vs prosthetic heme alkylation in the ω-hydroxylation of acetylenic fatty acids. J. Biol. Chem. 263, 18640–18649.

    PubMed  CAS  Google Scholar 

  79. Hammons, G.J., W.L. Alworth, N.E. Hopkins, F.P. Guengerich, and F.F. Kadlubar (1989). 2-Ethynylnaphthalene as a mechanism-based inactivator of the cytochrome P-450-catalyzed N-oxidation of 2-naphthylamine. Chem. Res. Toxicol. 2, 367–374.

    Article  PubMed  CAS  Google Scholar 

  80. Yun, C.-H., M.V. Martin, N.E. Hopkins, W.L. Alworth, G.J. Hammons, and F.P. Guengerich (1992). Modification of cytochrome P4501A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene. Biochemistry 31, 10556–10563.

    Article  PubMed  CAS  Google Scholar 

  81. Gan, L.-S.L., A.L. Acebo, and W.L. Alworth (1984). 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes. Biochemistry 23, 3827–3836.

    Article  PubMed  CAS  Google Scholar 

  82. Roberts, E.S., N.E. Hopkins, W.L. Alworth, and P.F. Hollenberg (1993). Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: Identification of an active-site peptide. Chem. Res. Toxicol. 6, 470–479.

    Article  PubMed  CAS  Google Scholar 

  83. Chan, W.K., Z Sui, and P.R. Ortiz de Montellano (1993). Determinants of protein modification versus heme alkylation: Inactivation of cytochrome P450 1A1 by 1-ethynylpyrene and phenylacetylene. Chem. Res. Toxicol. 6, 38–45.

    Article  PubMed  CAS  Google Scholar 

  84. Helvig, C., C. Alayrac, C. Mioskowski, D. Koop, D. Poullain, F. Durst et al. (1997). Suicide inactivation of cytochrome P450 by midchain and terminal acetylenes. A mechanistic study of inactivation of a plant lauric acid omega-hydroxylase. J. Biol. Chem. 272, 414–421.

    Article  PubMed  CAS  Google Scholar 

  85. Halpert, J., J.-Y. Jaw, and C. Balfour (1989). Specific inactivation by 17β-substituted steroids of rabbit and rat liver cytochromes P-450 responsible for progesterone 21-hydroxylation. Mol. Pharmacol. 34, 148–156.

    Google Scholar 

  86. Stevens, J.C., J-Y. Jaw, C.-T. Peng, and J. Halpert (1991). Mechanism-based inactivation of bovine adrenal cytochromes P450 C-21 and P450 17α by 17β-substituted steroids. Biochemistry 30, 3649–3658.

    Article  PubMed  CAS  Google Scholar 

  87. Guengerich, F.P. (1988). Oxidation of 17 alphaethynylestradiol by human liver cytochrome P-450. Mol. Pharmacol. 33, 500–508.

    PubMed  CAS  Google Scholar 

  88. Guengerich, F.P. (1990). Metabolism of 17 alphaethynylestradiol in humans. Life Sc. 47, 1981–1988.

    Article  CAS  Google Scholar 

  89. Guengerich, F.P. (1990). Inhibition of oral contraceptive steroid-metabolizing enzymes by steroids and drugs. Am. J. Obstet. Gynecol. 163 (Pt 2), 2159–2163.

    PubMed  CAS  Google Scholar 

  90. Lin, H.L., U.M. Kent, and P.F. Hollenberg, (2002). Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: Evidence for heme destruction and covalent binding to protein. J. Pharmacol. Exp. Ther. 301, 160–167.

    Article  PubMed  CAS  Google Scholar 

  91. Kent, U.M., D.E. Mills, R.V. Rajnarayanan, W.L. Alworth, and P.F. Hollenberg, (2002). Effect of 17-α-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: Characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J. Pharmacol. Exp. Ther. 300, 549–558.

    Article  PubMed  CAS  Google Scholar 

  92. Guengerich, F.P. (1990). Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem. Res. Toxicol. 3, 363–371.

    Article  PubMed  CAS  Google Scholar 

  93. Roberts, E.S., N.E. Hopkins, E.J. Zalulec, D.A. Gage, W.L. Alworth, and P.F. Hollenberg (1994). Identification of active-site peptides from 3H-labeled 2-ethynylnaphthalene-inactivated P450 2B1 and 2B4 using amino acid sequencing and mass spectrometry. Biochemistry 33, 3766–3771.

    Article  PubMed  CAS  Google Scholar 

  94. Regal, K.A., M.L. Schrag, L.C. Wienkers, U.M. Kent, and P.F. Hollenberg (2000). Mechanism-based inactivation of cytochrome P450 2B1 by 7-ethynylcoumarin: Verification of apo-P450 adduction by electrospray ion trap mass spectrometry. Chem. Res. Toxicol. 13, 262–270.

    Article  PubMed  CAS  Google Scholar 

  95. He, K., T.F. Woolf, and P.F. Hollenberg (1999). Mechanism-based inactivation of cytochrome P-450-3A4 by mifepristone (RU486). J. Pharmacol. Exp. Ther. 288, 791–797.

    PubMed  CAS  Google Scholar 

  96. Khan, K.K., Y.Q. He, M.A. Correia, and J.R. Halpert (2002). Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: Selective inactivation of P450 3A4. Drug Metab. Dispos. 30, 985–990.

    Article  PubMed  CAS  Google Scholar 

  97. Lunetta, J.M., K. Sugiyama, and M.A. Correia (1989). Secobarbital-mediated inactivation of rat liver cytochrome P-450b: A mechanistic reappraisal. Mol. Pharmacol. 35, 10–17.

    PubMed  CAS  Google Scholar 

  98. Letteron, P., V. Descatoire, D. Larrey, M. Tinel, J. Geneve, and D. Pessayre (1986). Inactivation and induction of cytochrome P-450 by various psoralen derivatives in rats. J. Pharmacol. Exp. Ther. 238, 685–692.

    PubMed  CAS  Google Scholar 

  99. Fouin-Fortunet, H., M. Tinel, V. Descatoire, P. Letteron, D. Larrey, J. Geneve et al. (1986). Inactivation of cytochrome P450 by the drug methoxsalen. J. Pharmacol. Exp. Ther. 236, 237–247.

    PubMed  CAS  Google Scholar 

  100. Tinel, M., J. Belghiti, V. Descatoire, G. Amouyal, P. Letteron, J. Geneve (1987). Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem. Pharmacol. 36, 951–955.

    Article  PubMed  CAS  Google Scholar 

  101. Labbe, G., V. Descatoire, P. Beaune, P. Letteron, D. Larrey, and D. Pessayre (1989). Suicide inactivation of cytochrome P450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety. J. Pharmacol. Exp. Ther. 250, 1034–1042.

    PubMed  CAS  Google Scholar 

  102. Mays, D.C., J.B. Hilliard, D.D. Wong, M.A. Chambers, S.S. Park, H.V. Gelboin et al. (1990). Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P450 in mouse liver microsomes: Modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts. J. Pharmacol. Exp. Ther. 254, 720–731.

    PubMed  CAS  Google Scholar 

  103. Khojasteh-Bakht, S.C., L.L. Koenigs, R.M. Peter, W.F. Trager, and S.D. Nelson (1998). (R)-(+)-Menthofuran is a potent, mechanism-based inactivator of human liver cytochrome P450 2A6. Drug Metab. Dispos. 26, 701–704.

    PubMed  CAS  Google Scholar 

  104. Cai, Y., D. Bennett, R.V. Nair, O. Ceska, M.J. Ashwood-Smith, and J. DiGiovanni (1993). Inhibition and inactivation of murine hepatic ethoxy-and pentoxyresorufin O-dealkylase by naturally occurring coumarins. Chem. Res. Toxicol. 6, 872–879.

    Article  PubMed  CAS  Google Scholar 

  105. Cai, Y., W. Baer-Dubowska, M.J. Ashwood-Smith, O. Ceska, S. Tachibana, and J. DiGiovanni (1996). Mechanism-based inactivation of hepatic ethoxyresorufin O-dealkylation activity by naturally occurring coumarins. Chem. Res. Toxicol. 9, 729–736.

    Article  PubMed  CAS  Google Scholar 

  106. Koenigs, L.L., and W.F. Trager (1998). Mechanism-based inactivation of P450 2A6 by furanocoumarins. Biochemistry 37, 10047–10061.

    Article  PubMed  CAS  Google Scholar 

  107. Schmiedlin-Ren, P., D.J. Edwards, M.E. Fitzsimmons, K. He, K.S. Lown, P.M. Woster et al. (1997). Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab. Dispos. 25, 1228–1233.

    PubMed  CAS  Google Scholar 

  108. Lown, K.S., D.G. Bailey, R.J. Fontana, S.K. Janardan, C.H. Adair, L.A. Fortlage et al. (1997). Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J. Clin. Invest. 99, 2545–2553.

    PubMed  CAS  Google Scholar 

  109. He, K., K.R. Iyer, R.N. Hayes, M.W. Sinz, T.F. Woolf, and P.F. Hollenberg (1998). Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice, Chem. Res. Toxicol. 11, 252–259.

    Article  PubMed  CAS  Google Scholar 

  110. Chiba, M., J.A. Nishime, and J.H. Lin (1995). Potent and selective inactivation of human liver microsomal cytochrome P-450 isoforms by L-754, 394, an investigational human immune deficiency virus protease inhibitor. J. Pharmacol. Exp. Ther. 275, 1527–1534.

    PubMed  CAS  Google Scholar 

  111. Sahali-Sahly, Y., S.K. Balani, J.H. Lin, and T.A. Baillie (1996). In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem. Res. Toxicol. 9, 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  112. Lightning, L.K., J.P. Jones, T. Friedberg, M.P. Pritchard, M. Shou, T.H. Rushmore et al. (2000). Mechanism-based inactivation of cytochrome P450 3A4 by L-754,394. Biochemistry 39, 4276–4287.

    Article  PubMed  CAS  Google Scholar 

  113. Masubuchi, Y., T. Nakano, A. Ose, and T. Horie (2001). Differential selectivity in carbamazepine-induced inactivation of cytochrome P450 enzymes in rat and human liver. Arch. Toxicol. 75, 538–543.

    Article  PubMed  CAS  Google Scholar 

  114. Mani, C., R. Pearce, A. Parkinson, and D. Kupfer (1994). Involvement of cytochrome P4503A in catalysis of tamoxifen activation and covalent binding to rat and human liver microsomes. Carcinogenesis 15, 2715–2720.

    Article  PubMed  CAS  Google Scholar 

  115. Sridar, C., U.M. Kent, L.M. Notley, E.M. Gillam, and P.F. Hollenberg (2002). Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6, J. Pharmacol. Exp. Ther. 301, 945–952.

    Article  PubMed  CAS  Google Scholar 

  116. Zhao, X.J., D.R. Jones, Y.H. Wang, S.W. Grimm, and S.D. Hall (2002). Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 32, 863–878.

    Article  PubMed  CAS  Google Scholar 

  117. Liu, H., M. Santostefano, and S. Safe (1994). 2-Phenylphenanthridinone and related compounds: Aryl hydrocarbon receptor agonists and suicide inactivators of P4501A1. Arch. Biochem. Biophys. 313, 206–214.

    Article  PubMed  CAS  Google Scholar 

  118. Butler, A.M. and M. Murray (1993). Inhibition and inactivation of constitutive cytochromes P450 in rat liver by parathion, Mol. Pharmacol. 43, 902–908.

    PubMed  CAS  Google Scholar 

  119. Murray, M. and A.M. Butler (1995). Identification of a reversible component in the in vitro inhibition of rat hepatic cytochrome P450 2B1 by parathion. J. Pharmacol. Exp. Ther. 272, 639–644.

    PubMed  CAS  Google Scholar 

  120. Butler, A.M. and M. Murray (1997). Biotransformation of parathion in human liver: Participation of CYP3A4 and its inactivation during microsomal parathion oxidation. J. Pharmacol. Exp. Ther. 280, 966–973.

    PubMed  CAS  Google Scholar 

  121. Murray, M. and A.M. Butler (1994). Hepatic biotransformation of parathion: Role of cytochrome P450 in NADPH-and NADH-mediated microsomal oxidation in vitro. Chem. Res. Toxicol. 7, 792–799.

    Article  PubMed  CAS  Google Scholar 

  122. Chambers, J.E. and H.W. Chambers (1990). Time course of inhibition of acetylcholinesterase and aliesterases following parathion and paraoxon exposures in rats. Toxicol. Appl. Pharmacol. 103, 420–429.

    Article  PubMed  CAS  Google Scholar 

  123. Koenigs, L.L., R.M. Peter, A.P. Hunter, R.L. Haining, A.E. Rettie, T. Friedberg et al. (1999). Electrospray ionization mass spectrometric analysis of intact cytochrome P450: Identification of tienilic acid adducts to P450 2C9. Biochemistry 38, 2312–2319.

    Article  PubMed  CAS  Google Scholar 

  124. Ha-Duong, N.T., S. Dijols, A.C. Macherey, J.A. Goldstein, P.M. Dansette, and D. Mansuy (2001). Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 40, 12112–12122.

    Article  PubMed  CAS  Google Scholar 

  125. Donahue, S.R., D.A. Flockhart, D.R. Abernethy, and J.W. Ko (1997). Ticlopidine inhibition of phenytoin metabolism mediated by potent inhibition of CYP2C19. Clin. Pharmacol. Ther. 62, 572–577.

    Article  PubMed  CAS  Google Scholar 

  126. Klaassen, S.L. (1998). Ticlopidine-induced phenytoin toxicity. Ann. Pharmacother. 32, 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  127. Lopez-Ariztegui, N., M. Ochoa, M.J. Sanchez-Migallon, C. Nevado, and M. Martin (1998). Acute phenytoin poisoning secondary to an interaction with ticlopidine. Rev. Neurol. 26, 1017–1018.

    PubMed  CAS  Google Scholar 

  128. Donahue, S., D.A. Flockhart, and D.R. Abernethy (1999). Ticlopidine inhibits phenytoin clearance. Clin. Pharmacol. Ther. 66, 563–568.

    PubMed  CAS  Google Scholar 

  129. Richter, T., K. Klein, T.E. Murdter, M. Eichelbaum, M. Schwab, and U.M. Zanger (2003). Clopidogrel and ticlopidine are specific mechanism-based inhibitors of human cytochrome P450 2B6. Proceedings of the 13th International Conference on Cytochromes P450, Prague, Czech Republic, p. S119.

    Google Scholar 

  130. Saunders, F. J. and R.L. Alberti (1978). Aldactone: Spironolactone: A Comprehensive Review. Searle, New York.

    Google Scholar 

  131. Kassahun, K., P.G. Pearson, W. Tang, I. McIntosh, K. Leung, C. Elmore et al. (2001). Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem. Res. Toxicol. 14, 62–70.

    Article  PubMed  CAS  Google Scholar 

  132. Gitlin, N., N.L. Julie, C.L. Spurr, K.M. Lim, and H.M. Juarbe (1998). Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann. Intern. Med. 129, 36–38.

    PubMed  CAS  Google Scholar 

  133. Neuschwander-Tetri, B.A., W.L. Isley, J.C. Oki, S. Ramrakhiani, S.G. Quiason, N.J. Phillips et al. (1998). Troglitazone-induced hepatic failure leading to liver transplantation. A case report. Ann. Intern. Med. 129, 38–41.

    PubMed  CAS  Google Scholar 

  134. Chen, Q., J.S. Ngui, G.A. Doss, R.W. Wang, X. Cai, F.P. DiNinno et al. (2002). Cytochrome P450 3A4-mediated bioactivation of raloxifene: Irreversible enzyme inhibition and thiol adduct formation. Chem. Res. Toxicol. 15, 907–914.

    Article  PubMed  CAS  Google Scholar 

  135. Kempf, D.J., K.C. Marsh, J.F. Denissen, E. McDonald, S. Vasavanonda, C.A. Flentge et al. (1995). ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA 92, 2484–2488.

    Article  PubMed  CAS  Google Scholar 

  136. Kempf, D.J., K.C. Marsh, G. Kumar, A.D. Rodrigues, J.F. Denissen, E. McDonald et al. (1997). Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agents Chemother. 41, 654–660.

    PubMed  CAS  Google Scholar 

  137. Koudriakova, T., E. Latsimirskaia, I. Utkin, E. Gangl, P. Vouros, E. Storozhuk et al. (1998). Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: Mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. 26, 552–561.

    PubMed  CAS  Google Scholar 

  138. Smith, T.J., Z. Guo, C. Li, S.M. Ning, P.E. Thomas, and C.S. Yang (1993). Mechanisms of inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone bioactivation in mouse by dietary phenethyl isothiocyanate. Cancer Res. 53, 3276–3282.

    PubMed  CAS  Google Scholar 

  139. Moreno, R.L., T. Goosen, U.M. Kent, F.L. Chung, and P.F. Hollenberg (2001). Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P450 2E1 and the mutant P450 2E1 T303A. Arch. Biochem. Biophys. 391, 99–110.

    Article  PubMed  CAS  Google Scholar 

  140. Nakajima, M., R. Yoshida, N. Shimada, H. Yamazaki, and T. Yokoi (2001). Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab. Dispos. 29, 1110–1113.

    PubMed  CAS  Google Scholar 

  141. Goosen, T.C., U.M. Kent, L. Brand, and P.F. Hollenberg (2000). Inactivation of cytochrome P450 2B1 by benzyl isothiocyanate, a chemopreventative agent from cruciferous vegetables. Chem. Res. Toxicol. 13, 1349–1359.

    Article  PubMed  CAS  Google Scholar 

  142. Goosen, T.C., D.E. Mills, and P.F. Hollenberg (2001). Effects of benzyl isothiocyanate on rat and human cytochromes P450: Identification of metabolites formed by P450 2B1. J. Pharmacol. Exp. Ther. 296, 198–206.

    PubMed  CAS  Google Scholar 

  143. Moreno, R.L., U.M. Kent, K. Hodge, and P.F. Hollenberg (1999). Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate. Chem. Res. Toxicol. 12, 582–587.

    Article  PubMed  CAS  Google Scholar 

  144. Kent, U.M., E.S. Roberts, J. Chun, K. Hodge, J. Juncaj, and P.F. Hollenberg (1998). Inactivation of cytochrome P450 2E1 by tert-butylisothiocyanate. Chem. Res. Toxicol. 11, 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  145. Chen, L., M. Lee, J.Y. Hong, W. Huang, E. Wang, and C.S. Yang (1994). Relationship between cytochrome P450 2E1 and acetone catabolism in rats as studied with diallyl sulfide as an inhibitor. Biochem. Pharmacol. 48, 2199–2205.

    Article  PubMed  CAS  Google Scholar 

  146. Lin, M.C., E.J. Wang, C. Patten, M.J. Lee, F. Xiao, K.R. Reuhl et al. (1996). Protective effect of diallyl sulfone against acetaminophen-induced hepatotoxicity in mice. J. Biochem. Toxicol. 11, 11–20.

    Article  PubMed  CAS  Google Scholar 

  147. Premdas, P.D., R.J. Bowers, and P.G. Forkert (2000). Inactivation of hepatic CYP2E1 by an epoxide of diallyl sulfone. J. Pharmacol. Exp. Ther. 293, 1112–1120.

    PubMed  CAS  Google Scholar 

  148. Langouet, S., L.L. Furge, N. Kerriguy, K. Nakamura, A. Guillouzo, and F.P. Guengerich (2000). Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem. Res. Toxicol. 13, 245–252.

    Article  PubMed  CAS  Google Scholar 

  149. Underwood, M.C., J.R. Cashman, and M.A. Correia (1992). Specifically designed thiosteroids as active site-directed probes for functional dissection of cytochrome P-450 3A isozymes. Chem. Res. Tox. 5, 42–53.

    Article  CAS  Google Scholar 

  150. Stevens, J.C. and J. Halpert (1988). Selective inactivation of four rat liver microsomal androstenedione hydroxylases by chloramphenicol analogs. Mol. Pharmacol. 33, 103–110.

    PubMed  CAS  Google Scholar 

  151. Halpert, J., J.Y. Jaw, L. Cornfield, C. Balfour, and E.A. Mash (1989). Selective inactivation of rat liver cytochromes P-450 by 21-chlorinated steroids. Drug Metab. Dispos. 17, 26–31.

    PubMed  CAS  Google Scholar 

  152. Halpert, J., J.Y. Jaw, C. Balfour, E.A. Mash, and E.F. Johnson (1988). Selective inactivation by 21-chlorinated steroids of rabbit liver and adrenal microsomal cytochromes P-450 involved in progesterone hydroxylation. Arch. Biochem. Biophys. 264, 462–471.

    Article  PubMed  CAS  Google Scholar 

  153. Ortiz de Montellano, P.R. (1985). Alkenes and alkynes. In M. Anders (ed.), Bioactivation of Foreign Compounds. Academic Press, New York, pp. 121–155.

    Google Scholar 

  154. De Matteis, F. (1978). Loss of liver cytochrome P-450 caused by chemicals. In F. De Matteis and W.N. Aldridge (eds.), Heme and Hemoproteins, Handbook of Experimental Pharmacology, Vol. 44. Springer-Verlag, Berlin, pp. 95–127.

    Google Scholar 

  155. Ortiz de Montellano, P.R. and M.A. Correia (1983). Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Ann. Rev. Pharmacol. Toxicol. 23, 481–503.

    Article  Google Scholar 

  156. Ortiz de Montellano, P.R. and B.A. Mico (1980). Destruction of cytochrome P-450 by ethylene and other olefins. Mol. Pharmacol. 18, 128–135.

    PubMed  CAS  Google Scholar 

  157. He, K., A.M. Falick, B. Chen, F. Nilsson, and M.A. Correia (1996). Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital. Chem. Res. Toxicol. 9, 614–622.

    Article  PubMed  CAS  Google Scholar 

  158. He, K., Y.A. He, G. Szklarz, J.R. Halpert, and M.A. Correia (1996). Secobarbital-mediated inactivation of cytochrome P450 2B1 and its active site mutants: Partitioning between heme and protein alkylation and epoxidation. J. Biol. Chem. 271, 25864–25872.

    Article  PubMed  CAS  Google Scholar 

  159. Lukton, D., J.E. Mackie, J.S. Lee, G.S. Marks, and P.R. Ortiz de Montellano (1988). 2,2-Dialkyl-1,2-dihydroquinolines: Cytochrome P-450 catalyzed N-alkylporphyrin formation, ferrochelatase inhibition, and induction of 5-aminolevulinic acid synthase activity. Chem. Res. Toxicol. 1, 208–215.

    Article  PubMed  CAS  Google Scholar 

  160. Poulos, T.L., J.R. Cupp-Vickery, and H. Li (1995). In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism and Biochemistry. Plenum Press, New York, pp. 125–150.

    Google Scholar 

  161. Gotoh, O. (1992). Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267, 83–90.

    PubMed  CAS  Google Scholar 

  162. Nelson, D.R. and H.W. Strobel (1988). On the membrane topology of vertebrate cytochrome P-450 proteins. J. Biol. Chem. 263, 6038–6050.

    PubMed  CAS  Google Scholar 

  163. von Wachenfeldt, C. and E.F. Johnson (1995). Structures of eukaryotic cytochrome P450 enzymes, In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism and Biochemistry. Plenum Press, New York, pp. 183–223.

    Google Scholar 

  164. Ortiz de Montellano, P.R. and E.A. Komives (1985). Branchpoint for heme alkylation and metabolite formation in the oxidation of aryl acetylenes. J. Biol. Chem. 260, 3330–3336.

    PubMed  CAS  Google Scholar 

  165. Roberts, E.S., S.J. Pernecky, W.L. Alworth, and P.F. Hollenberg (1996). A role for threonine 302 in the mechanism-based inactivation of P450 2B4 by 2-ethynylnaphthalene. Arch. Biochem. Biophys. 331, 170–176.

    Article  PubMed  CAS  Google Scholar 

  166. Ullrich, V. and P. Weber (1972). The O-dealkylation of 7-ethoxycoumarin by liver microsomes. A direct fluorometric test. Hoppe-Seyler’s Z. Physiol. Chem. 353, 1171–1177.

    PubMed  CAS  Google Scholar 

  167. Buters, J.T., C.D. Schiller, and R.C. Chou (1993). A highly sensitive tool for the assay of cytochrome P450 enzyme activity in rat, dog and man. Direct fluorescence monitoring of the deethylation of 7-ethoxy-4-trifluoromethylcoumarin. Biochem. Pharmacol. 46, 1577–1584.

    Article  PubMed  CAS  Google Scholar 

  168. Yu, P.H., B.A. Davis, and A.A. Boulton (1993). Effect of structural modification of alkyl N-propargylamines on the selective inhibition of monoamine oxidase B activity. Biochem. Pharmacol. 46, 753–757.

    Article  PubMed  CAS  Google Scholar 

  169. Sharma, U., E.S. Roberts, and P.F. Hollenberg (1996). Inactivation of cytochrome P4502B1 by the monoamine oxidase inhibitors R-(−)-deprenyl and clorgyline. Drug Metab. Dispos. 24, 669–675.

    PubMed  CAS  Google Scholar 

  170. Dyck, L.E. and B.A. Davis (2001). Inhibition of rat liver microsomal CYP1A2 and CYP2B1 activity by N-(2-heptyl)-N-methyl-propargylamine and by N-(2-heptyl)-propargylamine. Drug Metab. Dispos. 29, 1156–1161.

    PubMed  CAS  Google Scholar 

  171. Cutler, A.J., P.A. Rose, T.M. Squires, M.K. Loewen, A.C. Shaw, J.W. Quail et al. (2000). Inhibitors of abscisic acid 8′-hydroxylase. Biochemistry 39, 13614–13624.

    Article  PubMed  CAS  Google Scholar 

  172. Crowley, J.R. and P.F. Hollenberg (1995). Mechanism-based inactivation of rat liver cytochrome P4502B1 by phencyclidine and its oxidative product, the iminium ion. Drug Metab. Dispos. 23, 786–793.

    PubMed  CAS  Google Scholar 

  173. Jushchyshyn, M.I., U.M. Kent, and P.F. Hollenberg (2003). The mechanism-based inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab. Dispos. 31, 46–52.

    Article  PubMed  CAS  Google Scholar 

  174. Ward, D.P., A.J. Trevor, A. Kalir, J.D. Adams, T.A. Baillie, and N. Castagnoli (1982). Metabolism of phencyclidine. The role of iminium ion formation in covalent binding to rabbit microsomal protein. Drug Metab. Dispos. 10, 690–695.

    PubMed  CAS  Google Scholar 

  175. Hoag, M.K., A.J. Trevor, Y. Asscher, J. Weissman, and N. Castagnoli (1984). Metabolism-dependent inactivation of liver microsomal enzymes by phencyclidine. Drug Metab. Dispos. 12, 371–375.

    PubMed  CAS  Google Scholar 

  176. Hoag, M.K.P., A.J. Trevor, A. Kalir, and N. Castagnoli (1987). NADPH-dependent metabolism, covalent binding to macromolecules, and inactivation of cytochrome(s) P450. Drug Metab. Dispos. 15, 485–490.

    PubMed  CAS  Google Scholar 

  177. Owens, S.M., M. Gunnell, E.M. Laurenzana, and J.L. Valentine (1993). Dose-and time-dependent changes in phencyclidine metabolite covalent binding in rats and the possible role of CYP2D1. J. Pharmacol. Exp. Ther. 265, 1261–1266.

    PubMed  CAS  Google Scholar 

  178. Hoag, M.K., M. Schmidt-Peetz, P. Lampen, A. Trevor, and N. Castagnoli (1988). Metabolic studies on phencyclidine: Characterization of a phencyclidine iminium ion metabolite. Chem. Res. Toxicol. 1, 128–131.

    Article  PubMed  CAS  Google Scholar 

  179. Osawa, Y. and M.J. Coon (1989). Selective mechanism-based inactivation of the major phenobarbital-inducible P-450 cytochrome from rabbit liver by phencyclidine and its oxidation product, the iminium compound. Drug Metab. Dispos. 17, 7–13.

    PubMed  CAS  Google Scholar 

  180. Hiratsuka, A., T.Y. Chu, E.W. Distefano, L.Y. Lin, D.A. Schmitz, and A.K. Cho (1995). Inactivation of constitutive hepatic cytochromes P450 by phencyclidine in the rat. Drug Metab. Dispos. 23, 201–206.

    PubMed  CAS  Google Scholar 

  181. Brady, J.F., J. Dokko, E.W. Di Stefano, and A.K. Cho (1987). Mechanism-based inhibition of cytochrome P-450 by heterocyclic analogues of phencyclidine. Drug Metab. Dispos. 15, 648–652.

    PubMed  CAS  Google Scholar 

  182. Sharma, U., E.S. Roberts, U.M. Kent, S.M. Owens, and P.F. Hollenberg (1997). Metabolic inactivation of cytochrome P4502B1 by phencyclidine: Immunochemical and radiochemical analyses of the protective effects of glutathione. Drug Metab. Dispos. 25, 243–250.

    PubMed  CAS  Google Scholar 

  183. Bornheim, L.M., E.T. Everhart, J. Li, and M.A. Correia (1993). Characterization of cannabidiol-mediated cytochrome P450 inactivation. Biochem. Pharmacol. 45, 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  184. Bornheim, L.M. and M.P. Grillo (1998). Characterization of cytochrome P450 3A inactivation by cannabidiol: Possible involvement of cannabidiol-hydroxyquinone as a P450 inactivator. Chem. Res. Toxicol. 11, 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  185. Watanabe, K., N. Usami, I. Yamamoto, and H. Yoshimura (1991). Inhibitory effect of cannabidiol hydroxy-quinone, an oxidative product of cannabidiol, on the hepatic microsomal drugmetabolizing enzymes of mice. J. Pharmacobiodyn. 14, 421–427.

    PubMed  CAS  Google Scholar 

  186. Bornheim, L.M. (2000). Effects of unsaturated sidechain analogs of tetrahydrocannabinol on cytochromes P450. Biochem. Pharmacol. 60, 955–961.

    Article  PubMed  CAS  Google Scholar 

  187. Pathak, M.A., F. Daniels, and T.B. Fitzpatrick (1962). The presently known distribution of furocoumarins (psoralens) in plants. J. Invest. Dermatol. 38, 225–239.

    Google Scholar 

  188. Koenigs, L.L., R.M. Peter, S.J. Thompson, A.E. Rettie, and W.F. Trager (1997). Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab. Dispos. 25, 1407–1415.

    PubMed  CAS  Google Scholar 

  189. Fuhr, U. (1998). Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf. 18, 251–272.

    Article  PubMed  CAS  Google Scholar 

  190. Lin, J.H., M. Chiba, I.W. Chen, K.J. Vastag, J.A. Nishime, B.D. Dorsey et al. (1995). Time-and dose-dependent pharmacokinetics of L-754,394, an HIV protease inhibitor, in rats, dogs and monkeys. J. Pharmacol. Exp. Ther. 274, 264–269.

    PubMed  CAS  Google Scholar 

  191. Zhang, F., P.W. Fan, X. Liu, L. Shen, R.B. van Breeman, and J.L. Bolton (2000). Synthesis and reactivity of a potential carcinogenic metabolite of tamoxifen: 3,4-dihydroxytamoxifen-o-quinone. Chem. Res. Toxicol. 13, 53–62.

    Article  PubMed  CAS  Google Scholar 

  192. Pirmohamed, M., N.R. Kitteringham, T.M. Guenthner, A.M. Breckenridge, and B.K. Park (1992). An investigation of the formation of cytotoxic, protein-reactive and stable metabolites from carbamazepine in vitro. Biochem. Pharmacol. 43, 1675–1682.

    Article  PubMed  CAS  Google Scholar 

  193. Madden, S., J.L. Maggs, and B.K. Park (1996). Bioactivation of carbamazepine in the rat in vivo. Evidence for the formation of reactive arene oxide(s). Drug Metab. Dispos. 24, 469–479.

    PubMed  CAS  Google Scholar 

  194. Furst, S.M., P. Sukhai, R.A. McClelland, and J.P. Uetrecht (1995). Covalent binding of carbamazepine oxidative metabolites to neutrophils. Drug Metab. Dispos. 23, 590–594.

    PubMed  CAS  Google Scholar 

  195. Ju, C. and J.P. Uetrecht (1999). Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. J. Pharmacol. Exp. Ther. 288, 51–56.

    PubMed  CAS  Google Scholar 

  196. Wolkenstein, P., C. Tan, S. Lecoeur, J. Wechsler, N. Garcia-Martin, D. Charue et al. (1998). Covalent binding of carbamazepine reactive metabolites to P450 isoforms present in the skin. Chem. Biol. Interact. 113, 39–50.

    Article  PubMed  CAS  Google Scholar 

  197. Pirmohamed, M., A. Graham, P. Roberts, D. Smith, D. Chadwick, A.M. Breckenridge et al. (1991). Carbamazepine-hypersensitivity: Assessment of clinical and in vitro chemical cross-reactivity with phenytoin and oxcarbazepine. Br. J. Clin. Pharmacol. 32, 741–749.

    PubMed  CAS  Google Scholar 

  198. Riley, R.J., G. Smith, C.R. Wolf, V.A. Cook, and J.S. Leeder (1993). Human anti-endoplasmic reticulum autoantibodies produced in aromatic anticonvulsant hypersensitivity reactions recognise rodent CYP3A proteins and a similarly regulated human P450 enzyme(s). Biochem. Biophys. Res. Commun. 191, 32–40.

    Article  PubMed  CAS  Google Scholar 

  199. Leeder, J.S., A. Gaedigk, X. Lu, and V.A. Cook (1996). Epitope mapping studies with human anticytochrome P450 3A antibodies. Mol. Pharmacol. 49, 234–243.

    PubMed  CAS  Google Scholar 

  200. Ueng, Y.F., T. Kuwabara, Y.J. Chun, and F.P. Guengerich (1997). Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 36, 370–381.

    Article  PubMed  CAS  Google Scholar 

  201. Kang, P., S.L. Leeder, and M.A. Correia (2003). CYP3A4-mediated bioactivation of carbamazepine. In Proceedings, 12th North American ISSX Meeting. Providence, Rhode Island. p. 107.

    Google Scholar 

  202. Casida, J.E. (1970). Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J. Agric. Food Chem. 18, 753–772.

    Article  PubMed  CAS  Google Scholar 

  203. Hodgson, E. and R.M. Philpot (1974). Interaction of methylenedioxyphenyl (1,3-benzodioxole) compounds with enzymes and their effects on mammals. Drug Metab. Rev. 3, 231–301.

    PubMed  CAS  Google Scholar 

  204. Wilkinson, C.F., M. Murray, and C.B. Marcus (1984). Interactions of methylenedioxyphenyl compounds with cytochrome P-450 and effects on microsomal oxidation. In E. Hodgson, J.R. Bend, and R.M. Philpot (eds.), Reviews in Biochemical Toxicology, Vol. 6. Elsevier, Amsterdam, pp. 27–63.

    Google Scholar 

  205. Kulkarni, A.P., and E. Hodgson (1978). Cumene hydroperoxide-generated spectral interactions of piperonyl butoxide and other synergists with microsomes from mammals and insects. Pest. Biochem. Physiol. 9, 75–83.

    Article  CAS  Google Scholar 

  206. Elcombe, C.R., J.W. Bridges, R.H. Nimmo-Smith, and J. Werringloer (1975). Cumene hydroperoxide-mediated formation of inhibited complexes of methylenedioxyphenyl compounds with cytochrome P-450. Biochem. Soc. Trans. 3, 967–970.

    CAS  Google Scholar 

  207. Franklin, M.R. (1971). The enzymic formation of a methylene dioxyphenyl derivative exhibiting an isocyanide-like spectrum with reduced cytochrome P-450 in hepatic microsomes. Xenobiotica 1, 581–591.

    PubMed  CAS  Google Scholar 

  208. Elcombe, C.R., J.W. Bridges, T.J.B. Gray, R.H. Nimmo-Smith, and K.J. Netter (1975). Studies on the interaction of safrole with rat hepatic microsomes. Biochem. Pharmacol. 24, 1427–1433.

    Article  CAS  Google Scholar 

  209. Dickins, M., C.R. Elcombe, S.J. Moloney, K.J. Netter, and J.W. Bridges (1979). Further studies on the dissociation of the isosafrole metabolite-cytochrome P-450 complex. Biochem. Pharmacol. 28, 231–238.

    Article  PubMed  CAS  Google Scholar 

  210. Ullrich, V. and K.H. Schnabel (1973). Formation and binding of carbanions by cytochrome P-450 of liver microsomes. Drug Metab. Dispos. 1, 176–183.

    PubMed  CAS  Google Scholar 

  211. Ullrich, V. (1977). Mechanism of microsomal monooxygenases and drug toxicity. In D.J. Jollow, J. Kocsis, R. Snyder, and H. Vaino (eds.), Biological Reactive Intermediates, Plenum Press, New York, pp. 65–82.

    Google Scholar 

  212. Murray, M., K. Hetnarski, and C.F. Wilkinson (1985). Selective inhibitory interactions of alkoxymethylenedioxybenzenes towards monooxygenase activity in rat-hepatic microsomes. Xenobiotica 15, 369–379.

    PubMed  CAS  Google Scholar 

  213. Murray, M., C.F. Wilkinson, C. Marcus, and C.E. Dube (1983). Structure-activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo. Mol. Pharmacol. 24, 129–136.

    PubMed  CAS  Google Scholar 

  214. Mansuy, D. (1981). Use of model systems in biochemical toxicology: Heme models. In E. Hodgson, J.R. Bend, and R.M. Philpot (eds.), Reviews in Biochemical Toxicology, Vol. 3. Elsevier, Amsterdam, pp. 283–320.

    Google Scholar 

  215. Mansuy, D., J.P. Battioni, J.C. Chottard, and V. Ullrich (1979). Preparation of a porphyrin-ironcarbene model for the cytochrome P-450 complexes obtained upon metabolic oxidation of the insecticide synergists of the 1,3-benzodioxole series. J. Am. Chem. Soc. 101, 3971–3973.

    Article  CAS  Google Scholar 

  216. Dahl, A.R. and E. Hodgson (1979). The interaction of aliphatic analogs of methylenedioxyphenyl compounds with cytochromes P-450 and P-420. Chem. Biol. Interact. 27, 163–175.

    Article  PubMed  CAS  Google Scholar 

  217. Anders, M.W., J.M. Sunram, and C.F. Wilkinson (1984). Mechanism of the metabolism of 1,3-benzodioxoles to carbon monoxide. Biochem. Pharmacol. 33, 577–580.

    Article  PubMed  CAS  Google Scholar 

  218. Hansch, C. (1968). The use of homolytic, steric, and hydrophobic constants in a structure-activity study of 1,3-benzodioxole synergists. J. Med. Chem. 11, 920–924.

    Article  PubMed  CAS  Google Scholar 

  219. Hennessy, D.J. (1965). Hydride-transferring ability of methylene dioxybenzenes as a basis of synergistic activity. J. Agric Food Chem. 13, 218–231.

    Article  CAS  Google Scholar 

  220. Cook, J.C. and E. Hodgson (1983). Induction of cytochrome P-450 by methylenedioxyphenyl compounds: Importance of the methylene carbon. Toxicol. Appl. Pharmacol. 68, 131–139.

    Article  PubMed  CAS  Google Scholar 

  221. Casida, J.E., J.L Engel, E.G. Essac, F.X. Kamienski, and S. Kuwatsuka (1966). Methylene 14C-dioxyphenyl compounds: Metabolism in relation to their synergistic action. Science 153, 1130–1133.

    Article  PubMed  CAS  Google Scholar 

  222. Kamienski, F.X. and J.E. Casida (1970). Importance of methylenation in the metabolism in vivo and in vitro of methylenedioxyphenyl synergists and related compounds in mammals. Biochem. Pharmacol. 19, 91–112.

    Article  PubMed  CAS  Google Scholar 

  223. Yu, L.-S., C.F. Wilkinson, and M.W. Anders (1980). Generation of carbon monoxide during the microsomal metabolism of methylenedioxyphenyl compounds. Biochem. Pharmacol. 29, 1113–1122.

    Article  PubMed  CAS  Google Scholar 

  224. Metcalf, R.L., C.W. Fukuto, S. Fahmy, S. El-Azis, and E.R. Metcalf (1966). Mode of action of carbamate synergists. J. Agric Food. Chem. 14, 555–562.

    Article  CAS  Google Scholar 

  225. Greenblatt, D.J., L.L. von Moltke, J.S. Harmatz, and R.I. Shader (1999). Human cytochromes and some newer antidepressants: Kinetics, metabolism, and drug interactions. J. Clin. Psychopharmacol. 19(Suppl 1), 23S–35S.

    Article  PubMed  CAS  Google Scholar 

  226. Belpaire, F.M., P. Wijnant, A. Temmerman, B.B. Rasmussen, and K. Brosen (1998). The oxidative metabolism of metoprolol in human liver microsomes: Inhibition by the selective serotonin reuptake inhibitors. Eur. J. Clin. Pharmacol. 54, 261–264.

    Article  PubMed  CAS  Google Scholar 

  227. Otton, S.V., S.E. Ball, S.W. Cheung, T. Inaba, R.L. Rudolph, and E.M. Sellers (1996). Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br. J. Clin. Pharmacol. 41, 149–156.

    PubMed  CAS  Google Scholar 

  228. Bloomer, J.C., F.R. Woods, R.E. Haddock, M.S. Lennard, and G.T. Tucker (1992). The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br. J. Clin. Pharmacol. 33, 521–523.

    PubMed  CAS  Google Scholar 

  229. Sindrup, S.H., K. Brosen, and L.F. Gram (1992). Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: Nonlinearity and relation to the sparteine oxidation polymorphism. Clin. Pharmacol. Ther. 51, 288–295.

    PubMed  CAS  Google Scholar 

  230. Sindrup, S.H., K. Brosen, L.F. Gram, J. Hallas, E. Skjelbo, A. Allen et al. (1992). The relationship between paroxetine and the sparteine oxidation polymorphism. Clin. Pharmacol. Ther. 51, 278–287.

    PubMed  CAS  Google Scholar 

  231. Bertelsen, K.M., K. Venkatakrishnan, L.L. Von Moltke, R.S. Obach, and D.J. Greenblatt (2003). Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: Comparison with fluoxetine and quinidine. Drug Metab. Dispos. 31, 289–293.

    Article  PubMed  CAS  Google Scholar 

  232. Haddock, R.E., A.M. Johnson, P.F. Langley, D.R. Nelson, J.A. Pope, D.R. Thomas et al. (1989). Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta. Psychiatr. Scand. 80, 24–26.

    Google Scholar 

  233. Nakajima, M., M. Suzuki, R. Yamaji, H. Takashina, N. Shimada, H. Yamazaki et al. (1999). Isoform selective inhibition and inactivation of human cytochrome P450s by methylenedioxyphenyl compounds. Xenobiotica 29, 1191–1202.

    Article  PubMed  CAS  Google Scholar 

  234. Sharma, U., E.S. Roberts, and P.F. Hollenberg (1996). Formation of a metabolic intermediate complex of cytochrome P4502B1 by clorgyline. Drug Metab. Dispos. 24, 1247–1253.

    PubMed  CAS  Google Scholar 

  235. Franklin, M.R. (1977). Inhibition of mixed-function oxidations by substrates forming reduced cytochrome P-450 metabolic-intermediate complexes. Pharmacol. Ther. A. 2, 227–245.

    CAS  Google Scholar 

  236. Larrey, D., M. Tinel, and D. Pessayre (1983). Formation of inactive cytochrome P450 Fe(II)-metabolite complexes with several erythromycin derivatives but not with josamycin and midecamycin in rats. Biochem. Pharmacol. 32, 1487–1493.

    Article  PubMed  CAS  Google Scholar 

  237. Delaforge, M., M. Jaquen, and D. Mansuy (1983). Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: A structure-activity relationship. Biochem. Pharmacol. 32, 2309–2318.

    Article  PubMed  CAS  Google Scholar 

  238. Mansuy, D., P. Beaune, T. Cresteil, C. Bacot, J.C. Chottard, and P. Gans (1978). Formation of complexes between microsomal cytochrome P-450-Fe(II) and nitrosoarenes obtained by oxidation of arylhydroxylamines or reduction of nitroarenes in situ. Eur. J. Biochem. 86, 573–579.

    Article  PubMed  CAS  Google Scholar 

  239. Jonsson, J. and B. Lindeke (1976). On the formation of cytochrome P-450 product complexes during the metabolism of phenylalkylamines. Acta. Pharm. Suec. 13, 313–320.

    PubMed  CAS  Google Scholar 

  240. Franklin, M.R. (1974). The formation of a 455 nm complex during cytochrome P-450-dependent N-hydroxylamphetamine metabolism. Mol. Pharmacol. 10, 975–985.

    CAS  Google Scholar 

  241. Mansuy, D. (1978). Coordination chemistry of cytochromes P-450 and iron-porphyrins: Relevance to pharmacology and toxicology. Biochimie. 60, 969–977.

    CAS  Google Scholar 

  242. Lindeke, B., E. Anderson, G. Lundkvist, H. Jonsson, and S.O. Eriksson (1975). Autoxidation of N-hydroxyamphetamine and N-hydroxyphentermine: The formation of 2-nitroso-1-phenylpropanes and 1-phenyl-2-propanone oxime. Acta Pharm. Suec. 12, 183–198.

    PubMed  CAS  Google Scholar 

  243. Mansuy, D., P. Gans, J.C. Chottard. and J.F. Bartoli (1977). Nitrosoalkanes as Fe(II) ligands in the 455-nm-absorbing cytochrome P-450 complexes formed from nitroalkanes in reducing conditions. Eur. J. Biochem. 76, 607–615.

    Article  PubMed  CAS  Google Scholar 

  244. Pessayre, D., M. Konstantinova-Mitcheva, V. Descatoire, B. Cobert, J.C. Wandscheer, R. Level et al. (1981). Hypoactivity of cytochrome P-450 after triacetyloleandomycin administration. Biochem. Pharmacol. 30, 559–564.

    Article  PubMed  CAS  Google Scholar 

  245. Wrighton, S.A., P. Maurel, E.G. Schuetz, P.B. Watkins, B. Young, and P.S. Guzelian (1985). Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p. Biochemistry 24, 2171–2178.

    Article  PubMed  CAS  Google Scholar 

  246. Watkins, P.B., S.A. Wrighton, E.G. Schuetz, P. Maurel, and P.S. Guzelian (1986). Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture. J. Biol. Chem. 261, 6264–6271.

    PubMed  CAS  Google Scholar 

  247. Zhukov, A. and M. Ingelman-Sundberg (1999). Relationship between cytochrome P450 catalytic cycling and stability: Fast degradation of ethanol-inducible cytochrome P450 2E1 (CYP2E1) in hepatoma cells is abolished by inactivation of its electron donor NADPH-cytochrome P450 reductase. Biochem. J. 34, 453–458.

    Article  Google Scholar 

  248. Goasduff, T. and A.I. Cederbaum (1999). NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: Role of reactive oxygen species. Arch. Biochem. Biophys. 370, 258–270.

    Article  PubMed  CAS  Google Scholar 

  249. Henderson, C.J., D.M. Otto, D. Carrie, M.A. Magnuson, A.W. McLaren, I. Rosewell et al. (2003). Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 278, 13480–13486.

    Article  PubMed  CAS  Google Scholar 

  250. Hines, R.N. and R.A. Prough (1980). The characterization of an inhibitory complex formed with cytochrome P-450 and a metabolite of 1,1-disubstituted hydrazines. J. Pharmacol. Ther. 214, 80–86.

    CAS  Google Scholar 

  251. Muakkasah, S.F., W.R. Bidlack, and W.C.T. Yang (1981). Mechanism of the inhibitory action of isoniazid on microsomal drug metabolism. Biochem. Pharmacol. 30, 1651–1658.

    Article  Google Scholar 

  252. Moloney, S.J., B.J. Snider, and R.A. Prough (1984). The interactions of hydrazine derivatives with rat-hepatic cytochrome P-450. Xenobiotica 14, 803–814.

    PubMed  CAS  Google Scholar 

  253. Muakkassah, S.F., W.R. Bidlack, and W.C.T. Yang (1982). Reversal of the effects of isoniazid on hepatic cytochrome P-450 by potassium ferricyanide. Biochem. Pharmacol. 31, 249–251.

    Article  PubMed  CAS  Google Scholar 

  254. Mahy, J.P., P. Battioni, D. Mansuy, J. Fisher, R. Weiss, J. Mispelter et al. (1984). Iron porphyrin-nitrene complexes: Preparation from 1,1-dialkylhydrzines: Electronic structure from NMR, Mössbauer, and magnetic susceptibility studies and crystal structure of the [tetrakis p-chlorophenyl) porphyrinato-(2,2,6,6-tetramethyl-1-piperidyl) nitrene]iron complex. J. Am. Chem. Soc. 106, 1699–1706.

    Article  CAS  Google Scholar 

  255. Mansuy, D., P. Battioni, and J.P. Mahy (1982). Isolation of an iron-nitrene complex from the dioxygen and iron porphyrin dependent oxidation of a hydrazine. J. Am. Chem. Soc. 104, 4487–4489.

    Article  CAS  Google Scholar 

  256. Collman, J.P., P.D. Hampton, and J.I. Brauman (1986). Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation. J. Am. Chem. Soc. 108, 7861–7862.

    Article  CAS  Google Scholar 

  257. Ortiz de Montellano, P.R., R.A. Stearns, and K.C. Langry (1984). The allylisopropylacetamide and novonal prosthetic heme adducts. Mol. Pharmacol. 25, 310–317.

    PubMed  CAS  Google Scholar 

  258. Ortiz de Montellano, P.R., B.L.K. Mangold, C. Wheeler, K.L. Kunze, and N.O. Reich (1983). Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation. J. Biol. Chem. 258, 4208–4213.

    PubMed  CAS  Google Scholar 

  259. Ortiz de Montellano, P.R., K.L. Kunze, H.S. Beilan, and C. Wheeler (1982). Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene: Evidence for a radical cation intermediate in olefin oxidation. Biochemistry 21, 1331–1339.

    Article  PubMed  CAS  Google Scholar 

  260. Kunze, K.L., B.L.K. Mangold, C. Wheeler, H.S. Beilan, and P.R. Ortiz de Montellano (1983). The cytochrome P-450 active site. J. Biol. Chem. 258, 4202–4207.

    PubMed  CAS  Google Scholar 

  261. Brady, J.F., H. Ishizaki, J.M. Fukuto, M.C. Lin, A. Fadel, J.M. Gapac et al. (1991). Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem. Res. Toxicol. 4, 642–647.

    Article  PubMed  CAS  Google Scholar 

  262. Collman, J.P., P.D. Hampton, and J.I. Brauman (1986). Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation. J. Amer. Chem. Soc. 108, 7861–7862.

    Article  CAS  Google Scholar 

  263. Collman, J.P., P.D. Hampton, and J.I. Brauman (1990). Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. Part I: A mechanistic study of heme N-alkylation and epoxidation. J. Am. Chem. Soc. 112, 2977–2986.

    Article  CAS  Google Scholar 

  264. Collman, J.P., P.D. Hampton, and J.I. Brauman (1990). Suicide inactivation of cytochrome P-450 compounds by terminal olefins. Part II: Steric and electronic effects in heme N-alkylation and epoxidation. J. Am. Chem. Soc. 112, 2986–2998.

    Article  CAS  Google Scholar 

  265. Mansuy, D., L. Devocelle, I. Artaud, and J.P. Battioni (1985). Alkene oxidations by iodosylbenzene catalyzed by iron-porphyrins: Fate of the catalyst and formation of N-alkyl-porphyrin green pigments from monosubstituted alkenes as in cytochrome P-450. Nouv. J. Chim. 9, 711–716.

    CAS  Google Scholar 

  266. Artaud, I., L. Devocelle, J.-P. Battioni, J.-P. Girault, and D. Mansuy (1987). Suicidal inactivation of iron porphyrin catalysts during alk-1-ene oxidation: Isolation of a new type of N-alkylporphyrin. J. Am. Chem. Soc. 109, 3782–3783.

    Article  CAS  Google Scholar 

  267. Traylor, T.G., T. Nakano, A.R. Mikztal, and B.E. Dunlap (1987). Transient formation of N-alkyl-hemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanisms of epoxidation. J. Am. Chem. Soc. 109, 3625–3632.

    Article  CAS  Google Scholar 

  268. Traylor, T.G., and A.R. Mikztal (1989). Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regiochemistry of epoxidation. J. Am. Chem. Soc. 111, 7443–7448.

    Article  CAS  Google Scholar 

  269. Nakano, T., T.G. Traylor, and D. Dolphin (1990). The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) mesotetrakis(2,6-dichlorophenyl)porphyrin. Can J Chem. 10, 1859–1866.

    Google Scholar 

  270. Tian, Z.Q., J.L. Richards, and T.G. Traylor (1995). Formation of both primary and secondary N-alkylhemins during hemin-catalyzed epoxidation of terminal alkenes. J. Am. Chem. Soc. 117, 21–29.

    Article  CAS  Google Scholar 

  271. Blobaum, A.L., U.M. Kent, and P.F. Hollenberg (2003). Novel reversible adduction of the P450 heme: Inactivation of cytochrome P450 2E1 T303A by tert-butyl acetylene. In Proceedings of the 13th International Conference on Cytochromes P450. Prague, Czech Republic, p. S173.

    Google Scholar 

  272. Dexter, A.F. and L.P. Hager (1995). Transient heme N-alkylation of chloroperoxidase by terminal alkenes and alkynes. J. Am. Chem. Soc. 117, 817–818.

    Article  Google Scholar 

  273. Shaik, S., S.P. de Visser, F. Ogliaro, H. Schwarz, and D. Schröder (2002). Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P450 revealed by theory. Curr. Opin. Chem. Biol. 6, 556–567.

    Article  PubMed  CAS  Google Scholar 

  274. Ortiz de Montellano, P.R., and K.L. Kunze (1980). Self-catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates. J. Biol. Chem. 255, 5578–5585.

    PubMed  CAS  Google Scholar 

  275. Foroozesh, M., G. Primrose, Z. Guo, L.C. Bell, W.L. Alworth, and F.P. Guengerich (1997). Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem. Res. Toxicol. 10, 91–102.

    Article  PubMed  CAS  Google Scholar 

  276. Reilly, P.E., R.J. Gomi, and S.R. Mason (1999). Mechanism-based inhibition of rat liver microsomal diazepam C3-hydroxylase by mifepristone associated with loss of spectrally detectable cytochrome P450. Chem. Biol. Interact. 118, 39–49.

    Article  PubMed  CAS  Google Scholar 

  277. Spitz, I.M. and C.W. Bardin (1993). Mifepristone (RU 486)—a modulator of progestin and glucocorticoid action. N. Engl. J. Med. 329, 404–412.

    Article  PubMed  CAS  Google Scholar 

  278. Burger, A., J.E. Clark, M. Nishimoto, A.S. Muerhoff, B.S. Masters, and P.R. Ortiz de Montellano (1993). Mechanism-based inhibitors of prostaglandin omega-hydroxylase: (R)-and (S)-12-hydroxy-16-heptadecynoic acid and 2,2-dimethyl-12-hydroxy-16-heptadecynoic acid. J. Med. Chem. 36, 1418–1424.

    Article  PubMed  CAS  Google Scholar 

  279. Fan, P.W., C. Gu, S.A. Marsh, and J.C. Stevens (2003). Mechanism-based inactivation of cytochrome P450 2B6 by a novel terminal acetylene inhibitor. Drug Metab. Dispos. 31, 28–36.

    Article  PubMed  CAS  Google Scholar 

  280. De Matteis, F., G. Abbritti, and A.H. Gibbs (1973). Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Studies in rats and mice. Biochem. J. 134, 717–727.

    PubMed  Google Scholar 

  281. De Matteis, F. and A. Gibbs (1972). Stimulation of liver 5-aminolaevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Biochem. J. 126, 1149–1160.

    PubMed  Google Scholar 

  282. Gayarthri, A.K. and G. Padmanaban (1974). Biochemical effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mouse liver. Biochem. Pharmacol. 23, 2713–2725.

    Article  Google Scholar 

  283. Tephly, T.R., A.H. Gibbs, G. Ingall, and F. De Matteis (1980). Studies on the mechanism of experimental porphyria and ferrochelatase inhibition produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Int. J. Biochem. 12, 993–998.

    Article  PubMed  CAS  Google Scholar 

  284. Cole, S.P. and G.S. Marks (1984). Ferrochelatase and N-alkylated porphyrins. Mol. Cell Biochem. 64, 127–137.

    Article  PubMed  CAS  Google Scholar 

  285. Ortiz de Montellano, P.R., H.S. Beilan, and K.L. Kunze (1981). N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J. Biol. Chem. 256, 6708–6713.

    PubMed  CAS  Google Scholar 

  286. Augusto, O., H.S. Beilan, and P.R. Ortiz de Montellano (1982). The catalytic mechanism of cytochrome P-450: Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257, 11288–11295.

    PubMed  CAS  Google Scholar 

  287. De Matteis, F., C. Hollands, A.H. Gibbs, N. de Sa, and M. Rizzardini (1982). Inactivation of cytochrome P-450 and production of N-alkylated porphyrins caused in isolated hepatocytes by substituted dihydropyridines: Structural requirements for loss of haem and alkylation of the pyrrole nitrogen atom. FEBS Lett. 145, 87–92.

    Article  PubMed  Google Scholar 

  288. Tephly, T.R., B.L. Coffman, G. Ingall, M.S. Abou Zeit-Har, H.M. Goff, H.D. Tabba et al. (1981). Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Source of the methyl group. Arch. Biochem. Biophys. 212, 120–126.

    Article  PubMed  CAS  Google Scholar 

  289. De Matteis, F., A.H. Gibbs, P.B. Farmer, and J.H. Lamb (1981). Liver production of N-alkylated porphyrins caused by treatment with substituted dihydropyridines. FEBS Lett. 129, 328–331.

    Article  PubMed  Google Scholar 

  290. De Matteis, F., A.H. Gibbs, and C. Hollands (1983). N-Alkylation of the haem moiety of cytochrome P-450 caused by substituted dihydropyridines. Preferential attack of different pyrrole nitrogen atoms after induction of various cytochrome P-450 isoenzymes. Biochem. J. 211, 455–461.

    PubMed  Google Scholar 

  291. McCluskey, S.A., G.S. Marks, E.P. Sutherland, N. Jacobsen, and P.R. Ortiz de Montellano (1986). Ferrochelatase-inhibitory activity and N-alkylprotoporphyrin formation with analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) containing extended 4-alkyl groups: Implications for the active site of ferrochelatase. Mol. Pharmacol. 30, 352–357.

    PubMed  CAS  Google Scholar 

  292. McCluskey, S.A., D.S. Riddick, J.E. Mackie, R.A. Kimmett, R.A. Whitney, and G.S. Marks (1992). Inactivation of cytochrome P450 and inhibition of ferrochelatase by analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine with 4-nonyl and 4-dodecyl substituents. Can. J. Physiol. Pharmacol. 70, 1069–1074.

    PubMed  CAS  Google Scholar 

  293. Lee, J.S., N.E. Jacobsen, and P.R. Ortiz de Montellano (1988). 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines. Biochemistry 27, 7703–7710.

    Article  PubMed  CAS  Google Scholar 

  294. Böcker, R.H. and F.P. Guengerich (1986). Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29, 1596–1603.

    Article  PubMed  Google Scholar 

  295. Tephly, T.R., K.A. Black, M.D. Green, B.L. Coffman, G.A. Dannan, and F.P. Guengerich (1986). Effect of the suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins. Mol. Pharmacol. 29, 81–87.

    PubMed  CAS  Google Scholar 

  296. Riddick, D.S., S.S. Park, H.V. Gelboin, and G.S. Marks (1990). Effects of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on hepatic cytochrome P-450 heme, apoproteins, and catalytic activities following in vivo administration to rats. Mol. Pharmacol. 37, 130–136.

    PubMed  CAS  Google Scholar 

  297. McCluskey, S.A., R.A. Whitney, and G.S. Marks (1989). Evidence for the stereoselective inhibition of chick embryo hepatic ferrochelatase by N-alkylated porphyrins. Mol. Pharmacol. 36, 608–614.

    PubMed  CAS  Google Scholar 

  298. Kennedy, C.H. and R.P. Mason (1990). A reexamination of the cytochrome P-450-catalyzed free radical production from dihydropyridine: Evidence of trace transition metal catalysis. J. Biol. Chem. 265, 11425–11428.

    PubMed  CAS  Google Scholar 

  299. Ortiz de Montellano, P.R. and D.E. Kerr (1985). Inactivation of myoglobin by ortho-substituted aryl hydrazines: Formation of prosthetic heme aryl-iron but not N-aryl adducts. Biochemistry 24, 1147–1152.

    Article  PubMed  CAS  Google Scholar 

  300. Lukton, D., J.E. Mackie, J.S. Lee, G.S. Marks, and P.R. Ortiz de Montellano (1988). 2,2-Dialkyl-1,2-dihydroquinolines: Cytochrome P-450 catalyzed N-alkylporphyrin formation, ferrochelatase inhibition, and induction of 5-aminolevulinic acid synthase activity. Chem. Res. Toxicol. 1, 208–215.

    Article  PubMed  CAS  Google Scholar 

  301. Muakkassah, W.F., and W.C.T. Yang (1981). Mechanism of the inhibitory action of phenelzine on microsomal drug metabolism. J. Pharmacol. Exp. Ther. 219, 147–155.

    PubMed  CAS  Google Scholar 

  302. Ortiz de Montellano, P.R. O. Augusto, F. Viola, and K.L. Kunze (1983). Carbon radicals in the metabolism of alkyl hydrazines. J. Biol. Chem. 258, 8623–8629.

    PubMed  CAS  Google Scholar 

  303. Ortiz de Montellano, P.R. and M.D. Watanabe (1987). Free radical pathways in the in vitro hepatic metabolism of phenelzine. Mol. Pharmacol. 31, 213–219.

    PubMed  CAS  Google Scholar 

  304. Rumyantseva, G.V., C.H. Kennedy, and R.P. Mason (1991). Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals. J. Biol. Chem. 266, 21422–21427.

    PubMed  CAS  Google Scholar 

  305. Jonen, H.G., J. Werringloer, R.A. Prough, and R.W. Estabrook (1982). The reaction of phenylhydrazine with microsomal cytochrome P-450: Catalysis of heme modification. J. Biol. Chem. 257, 4404–4411.

    PubMed  CAS  Google Scholar 

  306. Mansuy, D., P. Battioni, J.F. Bartoli, and J.P. Mahy (1985). Suicidal inactivation of microsomal cytochrome P-450 by hydrazones. Biochem. Pharmacol. 34, 431–432.

    Article  CAS  Google Scholar 

  307. Delaforge, M., P. Battioni, J.P. Mahy, and D. Mansuy (1986). In vivo formation of σ-methyl and σ-phenyl-ferric complexes of hemoglobin and liver cytochrome P-450 upon treatment of rats with methyl and phenylhydrazine. Chem. Biol. Interact. 60, 101–114.

    Article  PubMed  CAS  Google Scholar 

  308. Raag, R., B.S. Swanson, T.L. Poulos, and P.R. Ortiz de Montellano (1990). Formation, crystal structure, and rearrangement of a cytochrome P450cam ironphenyl complex. Biochemistry, 29, 8119–8126.

    Article  PubMed  CAS  Google Scholar 

  309. Ortiz de Montellano, P.R. and K.L. Kunze (1981). Formation of N-phenylheme in the hemolytic reaction of phenylhydrazine with hemoglobin. J. Am. Chem. Soc. 103, 581–586.

    Article  CAS  Google Scholar 

  310. Saito, S. and H.A. Itano (1981). Beta-mesophenylbiliverdin IX-alpha and N-phenylprotoporphyrin IX, products of the reaction of phenylhydrazine with oxyhemoproteins. Proc. Natl. Acad. Sci. USA 78, 5508–5512.

    Article  PubMed  CAS  Google Scholar 

  311. Augusto, O., K.L. Kunze, and P.R. Ortiz de Montellano (1982). N-Phenylprotoporphyrin IX formation in the hemoglobin-phenylhydrazine reaction: Evidence for a protein-stabilized iron-phenyl intermediate. J. Biol. Chem. 257, 6231–6241.

    PubMed  CAS  Google Scholar 

  312. Kunze, K.L. and P.R. Ortiz de Montellano (1983). Formation of a sigma-bonded aryl-iron complex in the reaction of arylhydrazines with hemoglobin and myoglobin. J. Am. Chem. Soc. 105, 1380–1381.

    Article  CAS  Google Scholar 

  313. Ortiz de Montellano, P.R. and D.E. Kerr (1983). Inactivation of catalase by phenylhydrazine: Formation of a stable aryl-iron heme complex. J. Biol. Chem. 258, 10558–10563.

    PubMed  CAS  Google Scholar 

  314. Ringe, D., G.A. Petsko, D.E. Kerr, and P.R. Ortiz de Montellano (1984). Reaction of myoglobin with phenylhydrazine: A molecular doorstop. Biochemistry 23, 2–4.

    Article  PubMed  CAS  Google Scholar 

  315. Swanson, B.A. and P.R. Ortiz de Montellano (1991). Structure determination and absolute stereochemistry of the four N-phenylprotoporphyrin IX regioisomers. J. Am. Chem. Soc. 113, 8146–8153.

    Article  CAS  Google Scholar 

  316. Tuck, S.F., S. Graham-Lorence, J.A. Peterson, and P.R. Ortiz de Montellano (1993). Active sites of the cytochrome P450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regio-specificity. J. Biol. Chem. 268, 269–275.

    PubMed  CAS  Google Scholar 

  317. Swanson, B.A., D.R. Dutton, C.S. Yang, and P.R. Ortiz de Montellano (1991). The active sites of cytochromes P450 IA1, IIB1, IIB2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes J. Biol. Chem. 266, 19258–19264.

    PubMed  CAS  Google Scholar 

  318. Swanson, B.A., J.R. Halpert, L.M. Bornheim, and P.R. Ortiz de Montellano (1992). Topological analysis of the active sites of cytochromes P450IIB4 (rabbit), P450IIB10 (mouse) and P450IIB11 (dog) by in situ rearrangement of phenyl-iron complexes. Arch. Biochem. Biophys. 292, 42–46.

    Article  PubMed  CAS  Google Scholar 

  319. Tuck, S.F., J.A. Peterson, and P.R. Ortiz de Montellano (1992). Active site topologies of bacterial cytochromes P450 101 (P450cam), P450 108 (P450terp), and P450 102 (P450BM-3): In situ rearrangement of their phenyl-iron complexes. J. Biol. Chem. 267, 5614–5620.

    PubMed  CAS  Google Scholar 

  320. Tuck, S.F., Y. Aoyama, Y. Yoshida, and P.R. Ortiz de Montellano (1992). Active site topology of Saccharomyces cerevisiae lanosterol 14α-demethylase (CYP51) and its A310D mutant (cytochrome P450SG1). J. Biol. Chem. 267, 13175–13179.

    PubMed  CAS  Google Scholar 

  321. Tuck, S.F., and P.R. Ortiz de Montellano (1992). Topological mapping of the active sites of cytochromes P4502B1 and P4502B2 by in situ rearrangement of their aryl-iron complexes. Biochemistry 31, 6911–6916.

    Article  PubMed  CAS  Google Scholar 

  322. Tuck, S.F., K. Hiroya, T. Shimizu, M. Hatano, and P.R. Ortiz de Montellano (1993). The cytochrome P450 1A2 (CYP1A2) active site: Topology and perturbations caused by Glu-318 and Thr-319 mutations. Biochemistry 32, 2548–2553.

    Article  PubMed  CAS  Google Scholar 

  323. Battioni, P., J.P. Mahy, M. Delaforge, and D. Mansuy (1983). Reaction of monosubstituted hydrazines and diazenes with rat-liver cytochrome P-450: Formation of ferrous-diazene and ferric sigma-alkyl complexes. Eur. J. Biochem. 134, 241–248.

    Article  PubMed  CAS  Google Scholar 

  324. Battioni, P., J.-P. Mahy, G. Gillet, and D. Mansuy (1983). Iron porphyrin dependent oxidation of methyl-and phenylhydrazine: Isolation of iron(II)-diazene and sigma-alkyliron (III) (or aryliron(III)) complexes. Relevance to the reactions of hemoproteins with hydrazines. J. Am. Chem. Soc. 105, 1399–1401.

    Article  CAS  Google Scholar 

  325. Masubuchi, Y. and T. Horie (1998). Dihydralazine-induced inactivation of cytochrome P450 enzymes in rat liver microsomes. Drug Metab. Dispos. 26, 338–342.

    PubMed  CAS  Google Scholar 

  326. Masubuchi, Y. and T. Horie (1999). Mechanism-based inactivation of cytochrome P450s 1A2 and 3A4 by dihydralazine in human liver microsomes. Chem. Res. Toxicol. 12, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  327. Bourdi, M., J.C. Gautier, J. Mircheva, D. Larrey, A. Guillouzo, C. Andreet al. (1992). Anti-liver microsomes autoantibodies and dihydralazine-induced hepatitis: Specificity of autoantibodies and inductive capacity of the drug. Mol. Pharmacol. 42, 280–285.

    PubMed  CAS  Google Scholar 

  328. Belloc, C., A. Gauffre, C. Andre, and P.H. Beaune (1997). Epitope mapping of human CYP1A2 in dihydralazine-induced autoimmune hepatitis. Pharmacogenetics 7, 181–186.

    Article  PubMed  CAS  Google Scholar 

  329. Campbell, C.D. and C.W. Rees (1969). Reactive intermediates. Part III. Oxidation of 1-aminobenzotriazole with oxidants other than lead tetra-acetate. J. Chem. Soc. Chem. Commun. 752–756.

    Google Scholar 

  330. Ortiz de Montellano, P.R. and J.M. Mathews (1981). Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole: Isolation of an N,N-bridged benzyne-protoporphyrin IX adduct. Biochem. J. 195, 761–764.

    PubMed  CAS  Google Scholar 

  331. Ortiz de Montellano, P.R., J.M. Mathews, and K.C. Langry (1984). Autocatalytic inactivation of cytochrome P-450 and chloroperoxidase by 1-amino-benzotriazole and other aryne precursors. Tetrahedron 40, 511–519.

    Article  CAS  Google Scholar 

  332. Mathews, J.M. and J.R. Bend (1986). N-Alkylaminobenzotriazoles as isozyme-selective suicide inhibitors of rabbit pulmonary microsomal cytochrome P-450. Mol. Pharmacol. 30, 25–32.

    PubMed  CAS  Google Scholar 

  333. Mathews, J.M. and J.R. Bend (1993). N-Aralkyl derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of rabbit pulmonary cytochrome P450 in vivo. J. Pharmacol. Exp. Ther. 265, 281–285.

    PubMed  CAS  Google Scholar 

  334. Ortiz de Montellano, P.R. and A.K. Costa (1985). Dissociation of cytochrome P450 inactivation and induction. Arch. Biochem. Biophys. 251, 514–524.

    Article  Google Scholar 

  335. Mico, B.A., D.A. Federowicz, M.G. Ripple, and W. Kerns (1988). In vivo inhibition of oxidative drug metabolism by, and acute toxicity of, 1-aminobenzotriazole (ABT). Biochem. Pharmacol. 37, 2515–2519.

    Article  PubMed  CAS  Google Scholar 

  336. Mugford, C.A., M. Mortillo, B.A. Mico, and J.B. Tarloff (1992). 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague-Dawley rats. Fundam. Appl. Toxicol. 19, 43–49.

    Article  PubMed  CAS  Google Scholar 

  337. Xu, D., J.M. Voigt, B.A. Mico, S. Kominami, S. Takemori, and H.D. Colby (1994). Inhibition of adrenal cytochromes P450 by 1-aminobenzotriazole in vitro. Selectivity for xenobiotic metabolism. Biochem. Pharmacol. 48, 1421–1426.

    Article  PubMed  CAS  Google Scholar 

  338. Colby, H.D., B. Abbott, M. Cachovic, K.M. Debolt, and B.A. Mico (1995). Inactivation of adrenal cytochromes P450 by 1-aminobenzotriazole. Divergence of in vivo and in vitro actions. Biochem. Pharmacol. 49, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  339. Woodcroft, K.J., E.W. Szczepan, L.C. Knickle, and J.R. Bend (1990). Three N-aralkylated derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of guinea pig pulmonary cytochrome P450 in vitro. Drug Metab. Dispos. 18, 1031–1037.

    PubMed  CAS  Google Scholar 

  340. Sinal, C.J. and J.R. Bend (1996). Kinetics and selectivity of mechanism-based inhibition of guinea pig hepatic and pulmonary cytochrome P450 by N-benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole. Drug Metab. Dispos. 24, 996–1001.

    PubMed  CAS  Google Scholar 

  341. Sinal, C.J., M. Hirst, C.D. Webb, and J.R. Bend (1998). Enantioselective, mechanism-based inactivation of guinea pig hepatic cytochrome P450 by N-(alpha-methylbenzyl)-1-aminobenzotriazole. Drug Metab. Dispos. 26, 681–688.

    PubMed  CAS  Google Scholar 

  342. Sinal, C.J. and J.R. Bend (1995). Isozyme-selective metabolic intermediate complex formation of guinea pig hepatic cytochrome P450 by N-aralkylated derivatives of 1-aminobenzotriazole. Chem. Res. Toxicol. 8, 82–91.

    Article  PubMed  CAS  Google Scholar 

  343. Moreland, D.E., F.T. Corbin, and J.E. McFarland (1993). Effects of safeners on the oxidation of multiple substrates by grain sorghum microsomes. Pest. Biochem. Physiol. 45, 43–53.

    Article  CAS  Google Scholar 

  344. Cabanne, F., D. Huby, P. Gaillardon, R. Scalla, and F. Durst (1987). Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat. Pest. Biochem. Biophys. 28, 371–380.

    Article  CAS  Google Scholar 

  345. Feyereisen, R., K.C. Langry, and P.R. Ortiz de Montellano (1984). Self-catalyzed destruction of insect cytochrome P-450. Insect Biochem. 14, 19–26.

    Article  CAS  Google Scholar 

  346. Capello, S., L. Henderson, F. DeGrazia, D. Liberato, W. Garland, and C. Town (1990). The effect of the cytochrome P-450 suicide inactivator, 1-aminobenzotriazole, on the in vivo metabolism and pharmacologic activity of flurazepam. Drug Metab. Dispos. 18, 190–196.

    PubMed  CAS  Google Scholar 

  347. Kaikaus, R.M., W.K. Chan, N. Lysenko, R. Ray, P.R. Ortiz de Montellano, and N.M. Bass (1993). Induction of peroxisomal fatty acid β-oxidation and liver fatty acid-binding protein by peroxisome proliferators: Mediation via the cytochrome P450IVA1 ω-hydroxylase pathway. J. Biol. Chem. 268, 9593–9603.

    PubMed  CAS  Google Scholar 

  348. Su, P., K.M. Kaushal, and D.L. Kroetz (1998). Inhibition of renal arachidonic acid omega-hydroxylase activity with ABT reduces blood pressure in the SHR. Am. J. Physiol. 275, R426–R438.

    PubMed  CAS  Google Scholar 

  349. Whitman, D.W. and B.K. Carpenter (1980). Experimental evidence for nonsquare cyclobutadiene as a chemically significant intermediate in solution. J. Am. Chem. Soc. 102, 4272–4274.

    Article  CAS  Google Scholar 

  350. Stearns, R.A. and P.R. Ortiz de Montellano (1985). Inactivation of cytochrome P450 by a catalytically generated cyclobutadiene species. J. Am. Chem. Soc. 107, 234–240.

    Article  CAS  Google Scholar 

  351. Stejskal, R., M. Itabashi, J. Stanek, and Z. Hruban (1975). Experimental porphyria induced by 3-[2-(2,4,6-trimethylphenyl)-thioethyl]-4-methyl-sydnone. Virchows Arch. 18, 83–100.

    CAS  Google Scholar 

  352. Ortiz de Montellano, P.R. and L.A. Grab (1986). Inactivation of cytochrome P-450 during catalytic oxidation of a 3-[(arylthio)ethyl]sydnone: N-vinyl heme formation via insertion into the Fe-N bond. J. Am. Chem. Soc. 108, 5584–5589.

    Article  CAS  Google Scholar 

  353. White, E.H. and N. Egger (1984). Reaction of sydnones with ozone as a method of deamination: On the mechanism of inhibition of monoamine oxidase by sydnones. J. Am. Chem. Soc. 106, 3701–3703.

    Article  CAS  Google Scholar 

  354. Chevrier, B., R. Weiss, M.C. Lange, J.C. Chottard, and D. Mansuy (1981). An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance of the structure of the active oxygen complex of catalase. J. Am. Chem. Soc. 103, 2899–2901.

    Article  CAS  Google Scholar 

  355. Latos-Grazynski, L., R.J. Cheng, G.N. La Mar, and A.L. Balch (1981). Reversible migration of an axial carbene ligand into an iron-nitrogen bond of a porphyrin: Implications for high oxidation states of heme enzymes and heme catabolism. J. Am. Chem. Soc. 103, 4271–4273.

    Article  Google Scholar 

  356. Grab, L.A., B.A. Swanson, and P.R. Ortiz de Montellano (1988). Cytochrome P-450 inactivation by 3-alkylsydnones: Mechanistic implications of N-alkyl and N-alkenyl heme adduct formation. Biochemistry 27, 4805–4814.

    Article  PubMed  CAS  Google Scholar 

  357. White, I.N.H., A.G. Smith, and P.B. Farmer (1983). Formation of N-alkylated protoporphyrin IX in the livers of mice after diethylnitrosamine treatment. Biochem. J. 212, 599–608.

    PubMed  CAS  Google Scholar 

  358. Ding, X. and M.J. Coon (1988). Cytochrome P-450-dependent formation of ethylene from N-nitrosoethylamines. Drug Metab. Dispos. 16, 265–269.

    PubMed  CAS  Google Scholar 

  359. Frater, Y., A. Brady, E.A. Lock, and F. De Matteis (1993). Formation of N-methyl protoporphyrin in chemically-induced protoporphyria. Studies with a novel porphyrogenic agent. Arch. Toxicol. 67, 179–185.

    Article  PubMed  CAS  Google Scholar 

  360. De Matteis, F. and A.H. Gibbs (1980). Drug-induced conversion of liver haem into modified porphyrins. Biochem. J. 187, 285–288.

    PubMed  Google Scholar 

  361. Holley, A.E., Y. Frater, A.H. Gibbs, F. De Matteis, J.H. Lamb, P.B. Farmer et al. (1991). Isolation of two N-monosubstituted protoporphyrins, bearing either the whole drug or a methyl group on the pyrrole nitrogen atom, from liver of mice given griseofulvin. Biochem. J. 274, 843–848.

    PubMed  CAS  Google Scholar 

  362. Gibbs, A.H., S. Naylor, J.H. Lamb, Y. Frater, F. De Matteis (1990). Copper-induced dealkylation studies of biologically N-alkylated porphyrins by fast atom bombardment mass spectrometry. Anal. Chim. Acta 241, 233–239.

    Article  CAS  Google Scholar 

  363. De Matteis, F. and G.S. Marks (1996). Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can. J. Physiol. Pharmacol. 74, 1–8.

    Article  PubMed  Google Scholar 

  364. Bellingham, R.M.A., A.H. Gibbs, F. De Matteis, L.-Y. Lian, and G.C.K. Roberts (1995). Determination of the structure of an N-substituted protoporphyrin isolated from the livers of griseofulvin-fed mice. Biochem. J. 307, 505–512.

    PubMed  CAS  Google Scholar 

  365. Holley, A., L.J. King, A.H. Gibbs, and F. De Matteis (1990). Strain and sex differences in the response of mice to drugs that induce protoporphyria: Role of porphyrin biosynthesis and removal. J. Biochem. Toxicol. 5, 175–182.

    Article  PubMed  CAS  Google Scholar 

  366. De Matteis, F., A.H. Gibbs, S.R. Martin, and R.L.B. Milek (1991). Labeling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins. Biochem. J. 280, 813–816.

    PubMed  Google Scholar 

  367. Kobus, S.M., S.G. Wong, and G.S. Marks (2001). Isolation of regioisomers of N-alkylprotoporphyrin IX from chick embryo liver after treatment with porphyrinogenic xenobiotics. Can. J. Physiol. Pharmacol. 79, 814–821.

    Article  PubMed  CAS  Google Scholar 

  368. Kunze, K.L. and W.F. Trager (1993). Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol. 6, 649–656.

    Article  PubMed  CAS  Google Scholar 

  369. Clarke, S.E., A.D. Ayrton, and R.J. Chenery (1994). Characterization of the inhibition of P4501A2 by furafylline. Xenobiotica 24, 517–526.

    PubMed  CAS  Google Scholar 

  370. Tarrus, E., J. Cami, D.J. Roberts, R.G. Spickett, E. Celdran, and J. Segura (1987). Accumulation of caffeine in healthy volunteers treated with furafylline. Br. J. Clin. Pharmacol. 23, 9–18.

    PubMed  CAS  Google Scholar 

  371. Boobis, A.R., A.M. Lynch, S. Murray, R.R. De la Torre, A. Solans, M. Farre, J. Segura et al. (1994). CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res. 54, 89–94.

    PubMed  CAS  Google Scholar 

  372. Racha, J.K., A.E. Rettie, and K.L. Kunze (1998). Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: Detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry 37, 7407–7419.

    Article  PubMed  CAS  Google Scholar 

  373. Lewis, D.F. and B.G. Lake (1996). Molecular modelling of CYP1A subfamily members based on an alignment with CYP102: Rationalization of CYP1A substrate specificity in terms of active site amino acid residues. Xenobiotica 26, 723–753.

    PubMed  CAS  Google Scholar 

  374. Lozano, J.J., E. Lopez-de-Brinas, N.B. Centeno, R. Guigo, and F. Sanz (1997). Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ. J. Comput. Aided Mol. Des. 11, 395–408.

    Article  PubMed  CAS  Google Scholar 

  375. Nichols, W.K., D.N. Larson, and G.S. Yost (1990). Bioactivation of 3-methylindole by isolated rabbit lung cells. Toxicol. Appl. Pharmacol. 105, 264–270.

    Article  PubMed  CAS  Google Scholar 

  376. Rettie, A.E., A.W. Rettenmeier, W.N. Howald, and T.A. Baillie (1987). Cytochrome P-450-catalyzed formation of delta 4-VPA, a toxic metabolite of valproic acid. Science 235, 890–893.

    Article  PubMed  CAS  Google Scholar 

  377. Skordos, K.W., S.J. Smeal, C.A. Reilly, D.L. Lanza, and G.S. Yost (2003). Selective dehydrogenated intermediates are mechanism-based inactivators of CYP3A4, CYP2E1, and CYP2F1. In Proceedings of the 13th International Conference on Cytochromes P450. Prague, Czech Republic, p. S127.

    Google Scholar 

  378. Koop, D.R. (1990). Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole. Chem. Res. Toxicol. 3, 377–383.

    Article  PubMed  CAS  Google Scholar 

  379. Voorman, R.L., S.M. Maio, N.A. Payne, Z. Zhao, K.A. Koeplinger, and X. Wang (1998). Microsomal metabolism of delavirdine: Evidence for mechanism-based inactivation of human cytochrome P450 3A4. J. Pharmacol. Exp. Ther. 287, 381–388.

    PubMed  CAS  Google Scholar 

  380. Guzelian, P.S. and R.W. Swisher (1979). Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro: Involvement of non-carbon monoxide-forming mechanisms. Biochem. J. 184, 481–489.

    PubMed  CAS  Google Scholar 

  381. Davies, H.S., S.G. Britt, and L.R. Pohl (1986). Carbon tetrachloride and 2-isopropyl-4-pentenamide-induced inactivation of cytochrome P-450 leads to heme-derived protein adducts. Arch. Biochem. Biophys. 244, 387–352.

    Article  PubMed  CAS  Google Scholar 

  382. Osawa, Y. and L.R. Pohl (1989). Covalent bonding of the prosthetic heme to protein: A potential mechanism for the suicide inactivation or activation of hemoproteins. Chem. Res. Toxicol. 2, 131–141.

    Article  PubMed  CAS  Google Scholar 

  383. Correia, M.A., C. Decker, K. Sugiyama, P. Caldera, L. Bornheim, S.A. Wrighton et al. (1987). Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch. Biochem. Biophys. 258, 436–451.

    Article  PubMed  CAS  Google Scholar 

  384. Sugiyama, K., K. Yao, A.E. Rettie, and M.A. Correia (1989). Inactivation of rat hepatic cytochrome P-450 isozymes by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine. Chem. Res. Toxicol. 2, 400–410.

    Article  PubMed  CAS  Google Scholar 

  385. Riddick, D.S. and G.S. Marks (1990). Irreversible binding of heme to microsomal protein during inactivation of cytochrome P450 by alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine. Biochem. Pharmacol. 40, 1915–1921.

    Article  PubMed  CAS  Google Scholar 

  386. Guengerich, F.P. (1978). Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry 17, 3633–3639.

    Article  PubMed  CAS  Google Scholar 

  387. Guengerich, P. (1986). Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed. Biochem. Biophys. Res. Commun. 138, 193–198.

    Article  PubMed  CAS  Google Scholar 

  388. Schaefer, W.H., T.M. Harris, and F.P. Guengerich (1985). Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heme. Biochemistry 24, 3254–3263.

    Article  PubMed  CAS  Google Scholar 

  389. Yao, K., A.M. Falick, N. Patel, and M.A. Correia (1993). Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1: Identification of an active site heme-modified peptide. J. Biol. Chem. 268, 59–65.

    PubMed  CAS  Google Scholar 

  390. He, K., L.M. Bornheim, A.M. Falick, D. Maltby, H. Yin, and M.A. Correia (1998). Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 37, 17448–17457.

    Article  PubMed  CAS  Google Scholar 

  391. Karuzina, I.I. and A.I. Archakov (1994). The oxidative inactivation of cytochrome P450 in monooxygenase reactions. Free Rad. Biol. Med. 16, 73–97.

    Article  PubMed  CAS  Google Scholar 

  392. Catalano, C.E., Y.S. Choe, and P.R. Ortiz de Montellano (1989). Reactions of the protein radical in peroxide-treated myoglobin: Formation of a hemeprotein cross-link. J. Biol. Chem. 264, 10534–10541.

    PubMed  CAS  Google Scholar 

  393. Choe, Y.S. and P.R. Ortiz de Montellano (1991). Differential additions to the myoglobin prosthetic heme group. Oxidative γ-meso substitution by alkylhydrazines. J. Biol. Chem. 266, 8523–8530.

    PubMed  CAS  Google Scholar 

  394. Osawa, Y., B.M. Martin, P.R. Griffin, J.R. Yates III, J. Shabanowitz, D.F. Hunt et al. (1990). Metabolism-based covalent bonding of the heme prosthetic group to its apoprotein during the reductive debromination of BrCCl3 by myoglobin. J. Biol. Chem. 265, 10340–10346.

    PubMed  CAS  Google Scholar 

  395. Osawa, Y., R.J. Highet, A. Bax, and L.R. Pohl (1991). Characterization by NMR of the hememyoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring 1 vinyl group. J. Biol. Chem. 266, 3208–3214.

    PubMed  CAS  Google Scholar 

  396. Kindt, J.T., A, Woods, B.M. Martin, R.J. Cotter, and Y. Osawa (1992). Covalent alteration of the prosthetic heme of human hemoglobin by BrCCl3. Cross-linking of heme to cysteine residue 93. J. Biol. Chem. 267, 8739–8743.

    PubMed  CAS  Google Scholar 

  397. Docherty, J.C, G.D. Firneisz, and B.A. Schacter (1984). Methene bridge carbon atom elimination in oxidative heme degradation catalyzed by heme oxygenase and NADPH-cytochrome P-450 reductase. Arch. Biochem. Biophys. 235, 657–664.

    Article  PubMed  CAS  Google Scholar 

  398. Yoshinaga, T., S. Sassa, and A. Kappas (1982). A comparative study of heme degradation by NADPH-cytochrome C reductase alone and by the complete heme oxygenase system. Distinctive aspects of heme degradation by NADPH-cytochrome c reductase. J. Biol. Chem. 257, 7794–7802.

    PubMed  CAS  Google Scholar 

  399. Cantoni, L., A.H. Gibbs, and F. De Matteis (1981). Loss of haem and haemoproteins during the generation of superoxide anion and hydrogen peroxide: A pathway not involving production of carbon monoxide. Int. J. Biochem. 13, 823–830.

    Article  PubMed  CAS  Google Scholar 

  400. Bonnett, R. and J.C.M. Stewart (1975). Photooxidation of bilirubin in hydroxylic solvents. J. Chem. Soc., Perkin Trans. 1, 224–229.

    Article  Google Scholar 

  401. Tierney, D.J., A.L. Haas, and D.R. Koop (1992). Degradation of cytochrome P450 2E1: Selective loss after labilization of the enzyme. Arch. Biochem. Biophys. 293, 9–16.

    Article  PubMed  CAS  Google Scholar 

  402. Correia, M.A., K. Yao, S.A. Wrighton, D.J. Waxman, and A. Rettie (1992). Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: A case for distinct proteolytic mechanisms? Arch. Biochem. Biophys. 294, 493–503.

    Article  PubMed  CAS  Google Scholar 

  403. Correia, M.A., S.H. Davoll, S.A. Wrighton, and P.E. Thomas (1992). Degradation of rat liver cytochromes P-450 3A after their inactivation by 3,5-dicarbethyoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: Characterization of the proteolytic system. Arch. Biochem. Biophys. 297, 228–238.

    Article  PubMed  CAS  Google Scholar 

  404. Korsmeyer, K.K., S. Davoll, M.E. Figueiredo-Pereira, and M.A. Correia (1999). Proteolytic degradation of heme-modified hepatic cytochromes P450: A role for phosphorylation, Ubiquitination and the 26S Proteasome? Arch. Biochem. Biophys. 365, 31–44.

    Article  PubMed  CAS  Google Scholar 

  405. Wang, H., M.E. Figueiredo-Pereira, and M.A. Correia (1999). CYP 3A degradation in isolated rat liver hepatocytes: 26S proteasome inhibitors as probes. Arch. Biochem. Biophys. 365, 45–53.

    Article  PubMed  CAS  Google Scholar 

  406. Correia, M.A., K. Sugiyama, and K. Yao (1989). Degradation of rat hepatic cytochrome P450p. Drug Metab. Rev. 20, 615–628.

    PubMed  CAS  Google Scholar 

  407. Raner, G.M., A.D. Vaz, and M.J. Coon (1996). Metabolism of all-trans, 9-cis, and 13-cis isomers of retinal by purified isozymes of microsomal cytochrome P450 and mechanism-based inhibition of retinoid oxidation by citral. Mol. Pharmacol. 49, 515–522.

    PubMed  CAS  Google Scholar 

  408. Raner, G.M., E.W. Chiang, A.D. Vaz, and M.J. Coon (1997). Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: Relationship to aldehyde deformylation via a peroxyhemiacetal intermediate. Biochemistry 36, 4895–4902.

    Article  PubMed  CAS  Google Scholar 

  409. Raner, G.M., J.A. Hatchell, M.U. Dixon, T.L. Joy, A.E. Haddy, and E.R. Johnson, (2002). Regioselective peroxo-dependent heme alkylation in P450BM3-F87G by aromatic aldehydes: Effects of alkylation on catalysis. Biochemistry 41, 9601–9610.

    Article  PubMed  CAS  Google Scholar 

  410. Kuo, C.L., G.M. Raner, A.D. Vaz, and M.J. Coon (1999). Discrete species of activated oxygen yield different cytochrome P450 heme adducts from aldehydes. Biochemistry 38, 10511–10518.

    Article  PubMed  CAS  Google Scholar 

  411. Kuo, C.L., A.D. Vaz, and M.J. Coon (1997). Metabolic activation of trans-4-hydroxy-2-nonenal, a toxic product of membrane lipid peroxidation and inhibitor of P450 cytochromes. J. Biol. Chem. 272, 22611–22616.

    Article  PubMed  CAS  Google Scholar 

  412. Ortiz de Montellano, P.R. and K.L. Kunze (1980). Inactivation of hepatic cytochrome P-450 by allenic substrates. Biochem. Biophys. Res. Commun. 94, 443–449.

    Article  PubMed  CAS  Google Scholar 

  413. Hanzlik, R.P., V. Kishore, and R. Tullman (1979). Cyclopropylamines as suicidesubstrates for cytochromes P-450. J. Med. Chem. 22, 759–761.

    Article  PubMed  CAS  Google Scholar 

  414. Macdonald, T.L., K. Zirvi, L.T. Burka, P. Peyman, and F.P. Guengerich (1982). Mechanism of cytochrome P-450 inhibition by cyclopropylamines. J. Am. Chem. Soc. 104, 2050–2052.

    Article  CAS  Google Scholar 

  415. Ortiz de Montellano, P.R. and J.M. Mathews (1981). Inactivation of hepatic cytochrome P-450 by a 1,2,3-benzothiadiazole insecticide synergist. Biochem. Pharmacol. 30, 1138–1141.

    Article  PubMed  CAS  Google Scholar 

  416. Babu, B.R. and A.D.N. Vaz (1997). 1,2,3-Thiadiazole: A novel heterocyclic heme ligand for the design of cytochrome P450 inhibitors. Biochemistry 36, 7209–7216.

    Article  PubMed  CAS  Google Scholar 

  417. Masubuchi, Y., A. Ose, and T. Horie (2001). Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab. Dispos. 30, 1143–1148.

    Article  Google Scholar 

  418. Shen, S., S.J. Hargus, B.M. Martin, and L.R. Pohl (1997). Cytochrome P4502C11 is a target of diclofenac covalent binding in rats. Chem. Res. Toxicol. 10, 420–423.

    Article  PubMed  CAS  Google Scholar 

  419. Chun, Y.J., S.Y. Ryu, T.C. Jeong, and M.Y. Kim (2001). Mechanism-based inhibition of human cytochrome P450 1A1 by rhapontigenin. Drug. Metab. Dispos. 29, 389–393.

    PubMed  CAS  Google Scholar 

  420. Chang, T.K.H., J. Chen, and W.B.K. Lee (2001). Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: Evidence for mechanism-based inactivation of CYP1A2. J. Pharmacol. Exp. Ther. 299, 874–882.

    PubMed  CAS  Google Scholar 

  421. Voorman, R.L., N.A. Payne, L.C. Wienkers, M.J. Hauer, and P.E. Sanders (2001). Interaction of delavirdine with human liver microsomal cytochrome P450: Inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab. Dispos. 29, 41–47.

    PubMed  CAS  Google Scholar 

  422. Palamanda, J.R., C.N. Casciano, L.A. Norton, R.P. Clement, F.V. Favreau, C.C. Lin et al. (2001). Mechanism-based inactivation of CYP2D6 by 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine. Drug Metab. Dispos. 29, 863–867.

    PubMed  CAS  Google Scholar 

  423. Nerland, D.E., M.M. Iba, and G.J. Mannering (1981). Use of linoleic acid hydroperoxide in the determination of absolute spectra of membrane-bound cytochrome P450. Mol. Pharmacol. 19, 162–167.

    PubMed  CAS  Google Scholar 

  424. Poli, G., K. Cheeseman, T.F. Slater, and M.U. Danzani (1981). The role of lipid peroxidation in CCl4-induced damage to liver microsomal enzymes: Comparative studies in vitro using microsomes and isolated liver cells. Chem. Biol. Interact. 37, 13–24.

    Article  PubMed  CAS  Google Scholar 

  425. De Groot, H. and W. Haas (1981). Self-catalyzed O2-independent inactivation of NADPH-or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride. Biochem. Pharmacol. 30, 2343–2347.

    Article  PubMed  Google Scholar 

  426. Fernandez, G., M.C. Villaruel, E.G.D. de Toranzo, and J.A. Castro (1982). Covalent binding of carbon to the heme moiety of cytochrome P-450 and its degradation products. Res. Commun. Chem. Pathol. Pharmacol. 35, 283–290.

    PubMed  CAS  Google Scholar 

  427. De Groot, H., U. Harnisch, and T. Noll (1982). Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxic conditions. Biochem. Biophys. Res. Commun. 107, 885–891.

    Article  PubMed  Google Scholar 

  428. Reiner, O. and H. Uehleke (1971). Bindung von Tetrachlorkohlenstoff an reduziertes mikrosomales Cytochrome P-450 und an Häm. Hoppe-Seylers Z. Physiol. Chem. 352, 1048–1052.

    PubMed  CAS  Google Scholar 

  429. Cox, P.J., L.J. King, and D.V. Parke (1976). The binding of trichlorofluoromethane and other haloalkanes to cytochrome P-450 under aerobic and anaerobic conditions. Xenobiotica 6, 363–375.

    PubMed  CAS  Google Scholar 

  430. Roland, W.C., D. Mansuy, W. Nastainczyk, G. Deutschmann, and V. Ullrich (1977). The reduction of polyhalogenated methanes by liver microsomal cytochrome P450. Mol. Pharmacol. 13, 698–705.

    Google Scholar 

  431. Mansuy, D. and M. Fontecave (1983). Reduction of benzyl halides by liver microsomes: Formation of 478 nm-absorbing sigma-alkyl-ferric cytochrome P-450 complexes. Biochem. Pharmacol. 32, 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  432. Mansuy, D., M. Lange, J.C. Chottard, J.F. Bartoli, B. Chevrier, and R. Weiss (1978). Dichlorocarbene complexes of iron(II)-porphyrins—Crystal and molecular structure of Fe(TPP)(CCl2)(H2O). Angew. Chem. Int. Ed. Engl. 17, 781–782.

    Article  Google Scholar 

  433. Ahr, H.J., L.J. King, W. Nastainczyk, and V. Ullrich (1980). The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Biochem. Pharmacol. 29, 2855–2861.

    Article  PubMed  CAS  Google Scholar 

  434. Mansuy, D., M. Lange, J.C. Chottard, and J.F. Bartoli (1978). Reaction du complexe carbenique Fe(II)(tetraphenylporphyrine)(CCl2) avec les amines primaires: Formation d’isonitriles. Tetrahedron Lett. 33, 3027–3030.

    Article  Google Scholar 

  435. Mansuy, D. and J.-P. Battioni (1982). Isolation of sigma-alkyl-iron(III) or carbene-iron(II) complexes from reduction of polyhalogenated compounds by iron(II)-porphyrins: The particular case of halothane CF3CHClBr. J. Chem. Soc. Chem. Commun. 638–639.

    Google Scholar 

  436. Ruf, H.H., H. Ahr, W. Nastainczyk, V. Ullrich, D. Mansuy, J.-P. Battioni (1984). Formation of a ferric carbanion complex from halothane and cytochrome P-450: Electron spin resonance, electronic spectra and model complexes. Biochemistry 23, 5300–5306.

    Article  CAS  Google Scholar 

  437. Castro, C.E., R.S. Wade, and N.O. Belser (1985). Biodehalogenation: Reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24, 204–210.

    Article  PubMed  CAS  Google Scholar 

  438. Callot, H. J. and E. Scheffer (1980). Model for the in vitro transformation of cytochrome P-450 into “green pigments.” Tetrahedron Lett. 21, 1335–1338.

    Article  CAS  Google Scholar 

  439. Lange, M. and D. Mansuy (1981). N-Substituted porphyrin formation from carbene iron-porphyrin complexes: A possible pathway for cytochrome P-450 heme destruction. Tetrahedron Lett. 22, 2561–2564.

    Article  CAS  Google Scholar 

  440. Chevrier, B., R. Weiss, M. Lange, J.C. Chotard, and D. Mansuy (1981). An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance to the structure of the active oxygen complex of catalase. J. Am. Chem. Soc. 103, 2899–2901.

    Article  CAS  Google Scholar 

  441. Olmstead, M.M., R.-J. Cheng, and A.L. Balch (1982). X-ray crystallographic characterization of an iron porphyrin with a vinylidene carbene inserted into an iron-nitrogen bond. Inorg. Chem. 21, 4143–4148.

    Article  CAS  Google Scholar 

  442. Falzon, M., A. Nielsch, and M.D. Burke (1986). Denaturation of cytochrome P-450 by indomethacin and other non-steroidal anti-inflammatory drugs: Evidence for a surfactant mechanism and a selective effect of a p-chlorophenyl moiety. Biochem. Pharmacol. 35, 4019–4024.

    Article  PubMed  CAS  Google Scholar 

  443. Guengerich, F.P., G.A. Dannan, T.S. Wright, M.V. Martin, and L.S. Kaminsky (1982). Purification and characterization of liver microsomal cytochromes P-450: Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry 21, 6019–6030.

    Article  PubMed  CAS  Google Scholar 

  444. Halpert, J.R. (1995). Structural basis of selective cytochrome P450 inhibition. Annu. Rev. Pharmacol. Toxicol. 35, 29–53.

    Article  PubMed  CAS  Google Scholar 

  445. Kim, S., H. Ko, J.E. Park, S. Jung, S.K. Lee, and Y. Chun (2002). Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. J. Med. Chem. 45, 160–164.

    Article  PubMed  CAS  Google Scholar 

  446. Covey, D.F. (1988). Aromatase inhibitors: Specific inhibitors of oestrogen biosynthesis. In Berg and Plempel (eds), Sterol Biosynthesis Inhibitors. Ellis Horwood Ltd., Cambridge, pp. 534–571.

    Google Scholar 

  447. Henderson, D., U.-F. Habenicht, Y. Nishino, U. Kerb, and M.F. El Etreby (1986). Aromatase inhibitors and benign prostatic hyperplasia. J. Steroid Biochem. 25, 867–876.

    Article  PubMed  CAS  Google Scholar 

  448. Van Wauwe, J.P. and P.A.J. Janssen (1989). Is there a case for P-450 inhibitors in cancer treatment. J. Med. Chem. 32, 2231–2239.

    Article  PubMed  Google Scholar 

  449. Kellis, J.T., J.J. Sheets, and L.E. Vickery (1984). Amino-steroids as inhibitors and probes of the active site of cytochrome P-450scc. Effects on the enzyme from different sources. J. Steroid Biochem. 20, 671–676.

    Article  PubMed  CAS  Google Scholar 

  450. Sheets, J.J. and L.E. Vickery (1983). Active site-directed inhibitors of cytochrome P-450scc: Structural and mechanistic implications of a side chain-substituted series of amino-steroids. J. Biol. Chem. 258, 11446–11452.

    PubMed  CAS  Google Scholar 

  451. Sheets, J.J. and L.E. Vickery (1982). Proximity of the substrate binding site and the heme-iron catalytic site in cytochrome P-450scc. Proc. Natl. Acad. Sci. USA 79, 5773–5777.

    Article  PubMed  CAS  Google Scholar 

  452. Nagahisa, A., T. Foo, M. Gut, and W.H. Orme-Johnson (1985). Competitive inhibition of cytochrome P-450scc by (22R)-and (22S)-22-aminocholesterol: Side chain stereochemical requirements for C-22 amine coordination to the active-site heme. J. Biol. Chem. 260, 846–851.

    PubMed  CAS  Google Scholar 

  453. Vickery, L.E. and J. Singh (1988). 22-Thio-23,24-bisnor-5-cholen-3β-ol: An active site-directed inhibitor of cytochrome P450scc. J. Steroid Biochem. 29, 539–543.

    Article  PubMed  CAS  Google Scholar 

  454. Nagahisa, A., R.W. Spencer, and W.H. Orme-Johnson (1983). Acetylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-450scc. J. Biol. Chem. 258, 6721–6723.

    PubMed  CAS  Google Scholar 

  455. Olakanmi, O. and D.W. Seybert (1990). Modified acetylenic steroids as potent mechanism-based inhibitors of cytochrome P-450scc. J. Steroid Biochem. 36, 273–280.

    Article  PubMed  CAS  Google Scholar 

  456. Krueger, R.J., A. Nagahisa, M. Gut, S.R. Wilson, and W.H. Orme-Johnson (1985). Effect of P-450scc inhibitors on corticosterone production by rat adrenal cells. J. Biol. Chem. 260, 852–859.

    PubMed  CAS  Google Scholar 

  457. Nagahisa, A., W.H. Orme-Johnson, and S.R. Wilson (1984). Silicon mediated suicide inhibition: An efficient mechanism-based inhibitor of cytochrome P-450scc oxidation of cholesterol. J. Am. Chem. Soc. 106, 1166–1167.

    Article  CAS  Google Scholar 

  458. Trahanovsky, W.S. and A.L. Himstedt (1974). Oxidation of organic compounds with cerium(IV). XX. Abnormally rapid rate of oxidative cleavage of (beta-trimethylsilylethyl)-phenylmethanol. J. Am. Chem. Soc. 96, 7974–7976.

    Article  CAS  Google Scholar 

  459. Vickery, L.E. and J. Singh (1988). 22-Thio-23,24-bisnor-5-cholen-3β-ol: An active site-directed inhibitor of cytochrome P450scc. J. Steroid Biochem. 29, 539–543.

    Article  PubMed  CAS  Google Scholar 

  460. Miao, E., C. Zuo, A. Nagahisa, B.J. Taylor, S. Joardar, C. Byon et al. (1990). Cytochrome P450scc mediated oxidation of (20S)-22-nor-22-thiacholesterol: Characterization of mechanism-based inhibition. Biochemistry 29, 2199–2204.

    Google Scholar 

  461. Brodie, A.M., H.M. Dowsett, and R.C. Coombes (1988). Aromatase inhibitors as new endocrine therapy for breast cancer. Cancer Treat. Res. 39, 51–65.

    PubMed  CAS  Google Scholar 

  462. Brodie, A.M.H., P.K. Banks, S.E. Inkster, M. Dowsett, and R.C. Coombes (1990). Aromatase inhibitors and hormone-dependent cancers. J. Steroid Biochem. Mol. Biol. 37, 327–333.

    Article  PubMed  CAS  Google Scholar 

  463. Johnston, J.O. (1998). Aromatase inhibitors. Crit. Rev. Biochem. Mol. Biol. 33, 375–405.

    PubMed  CAS  Google Scholar 

  464. Brodie, A., Q. Lu, and B. Long (1999). Aromatase and its inhibitors. J. Steroid Biochem. Mol. Biol. 69, 205–210.

    Article  PubMed  CAS  Google Scholar 

  465. Seralini, G. and S. Moslemi (2001). Aromatase inhibitors: Past, present and future. Mol. Cell. Endocrinol. 178, 117–131.

    Article  PubMed  CAS  Google Scholar 

  466. Recanatini, M., A. Cavalli, and P. Valenti (2002). Nonsteroidal aromatase inhibitors: Recent advances. Med. Res. Rev. 22, 282–304.

    Article  PubMed  CAS  Google Scholar 

  467. Henderson, D., U.-F. Habenicht, Y. Nishino, and M. F. El Etreby (1987). Estrogens and benign prostatic hyperplasia: The basis for aromatase inhibitor therapy. Steroids 50, 219–233.

    Article  PubMed  CAS  Google Scholar 

  468. Schweikert, H.-U. and U.W. Tunn (1987). Effects of the aromatase inhibitor testolactone on human benign prostatic hyperplasia. Steroids 50, 191–199.

    Article  PubMed  CAS  Google Scholar 

  469. Phillips, G.B., W.P. Castelli, R.D. Abbott, and P.M. McNamara (1983). Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort. Am. J. Med. 74, 863–869.

    Article  PubMed  CAS  Google Scholar 

  470. Santen, R.J., T.J. Worgul, E. Samojlik, A. Interrante, A.E. Boucher, A. Lipton et al. (1981). A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer. Engl. J. Med. 305, 545–551.

    CAS  Google Scholar 

  471. Harris, A.L., T.J. Powles, I.E. Smith, R.C. Coombes, H.T. Ford, J.C. Gazet et al. (1983). Aminoglutethimide for the treatment of advanced postmenopausal breast cancer. Eur. J. Cancer Clin. Oncol. 19, 11–17.

    Article  PubMed  CAS  Google Scholar 

  472. Foster, A.B., M. Jarman, C.S. Leung, M.G. Rowlands, G.N. Taylor, R.G.T Plevey et al. (1985). Analogues of aminoglutethimide: Selective inhibition of aromatase. J. Med. Chem. 28, 200–204.

    Article  PubMed  CAS  Google Scholar 

  473. Foster, A.B., M. Jarman, C.-S. Leung, M.G. Rowlands, and G.N. Taylor (1983). Analogues of aminoglutethimide: Selective inhibition of cholesterol side-chain cleavage. J. Med. Chem. 26, 50–54.

    Article  PubMed  CAS  Google Scholar 

  474. Bhatnagar, A.S., A. Hausler, K. Schieweck, L.J. Browne, R. Bowman, and R.E. Steele (1990). Novel aromatase inhibitors. J. Steroid Biochem. Mol. Biol. 37, 363–367.

    Article  PubMed  CAS  Google Scholar 

  475. Lipton, A., H.A. Harvey, L.M. Demers, J.R. Hanagan, M.T. Mulagha, G.M. Kochak et al. (1990). A phase I trial of CGS 16949A: A new aromatase inhibitor. Cancer 65, 1279–1285.

    Article  PubMed  CAS  Google Scholar 

  476. Santen, R.J., L.M. Demers, H. Adlercreutz, H. Harvey, S. Santner, S. Sanders et al. (1989). Inhibition of aromatase with CGS 16949A in postmenopausal women. J. Clin. Endocrinol. Metab. 68, 99–106.

    PubMed  CAS  Google Scholar 

  477. Stein, R.C., M. Dowsett, J. Davenport, A. Hedley, H.T. Ford, J.-C. Gazet et al. (1990). Preliminary study of the treatment of advanced breast cancer in postmenopausal women with the aromatase inhibitor CGS 16949A. Cancer Res. 50, 1381–1384.

    PubMed  CAS  Google Scholar 

  478. Demers, L.M., J.C. Melby, T.E. Wilson, A. Lipton, H.A. Harvey, and R.J. Santen (1990). The effects of CGS 16949A, an aromatase inhibitor on adrenal mineralocorticoid biosynthesis. J. Clin. Endocrinol. Metab. 70, 1162–1166.

    PubMed  CAS  Google Scholar 

  479. Tominaga, T., I. Adachi, Y. Sasaki, T. Tabei, T. Ikeda, Y. Takatsuka et al. (2003). Double-blind randomised trial comparing the non-steroidal aromatase inhibitors letrozole and fadrozole in postmenopausal women with advanced breast cancer. Ann. Oncol. 14, 62–70.

    Article  PubMed  CAS  Google Scholar 

  480. Goss, P.E. and R.E. Smith (2002). Letrozole for the management of breast cancer. Expert Rev. Anticancer. Ther. 2, 249–260.

    Article  PubMed  CAS  Google Scholar 

  481. Wouters, W., R. De Coster, R.W. Tuman, C.R. Bowden, J. Bruynseels, H. Vanderpas et al. (1989). Aromatase inhibition by R 76713: Experimental and clinical pharmacology. J. Steroid Biochem. 34, 427–430.

    Article  PubMed  CAS  Google Scholar 

  482. Wouters, W., R. De Coster, J. Van Dun, M.D.W.G. Krekels, A. Dillen, A. Raeymaekers et al. (1990). Comparative effects of the aromatase inhibitor R76713 and of its enantiomers R83839 and R83842 on steroid biosynthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 37, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  483. Vanden Bossche, H., G. Willemsens, I. Roels, D. Bellens, H. Moereels, M.-C. Coene et al. (1990). R 76713 and enantiomers: Selective, nonsteroidal inhibitors of the cytochrome P450-dependent oestrogen synthesis. Biochem. Pharmacol. 40, 1707–1718.

    Article  PubMed  CAS  Google Scholar 

  484. Ahmed, S., S. Adat, A. Murrells, C.P. Owen, and Y. Amanuel (2002). Design, synthesis, and evaluation of 4-(4′)-aminobenzyl)-2-oxazolidinones as novel inhibitors of the cytochrome P-450 enzyme aromatase. Bioorg. Chem. 30, 315–331.

    Article  PubMed  CAS  Google Scholar 

  485. Marchand, P., M. Le Borgne, M. Palzer, G. Le Baut, and R.W. Hartmann (2003). Preparation and pharmacological profile of 7-(alpha-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg. Med. Chem. Lett. 13, 1553–1555.

    Article  PubMed  CAS  Google Scholar 

  486. Pouget, C., C. Fagnere, J.P. Basly, G. Habrioux, and A.J. Chulia (2003). Design, synthesis and evaluation of 4-imidazolylflavans as new leads for aromatase inhibition. Bioorg. Med. Chem. Lett. 12, 2859–2861.

    Article  Google Scholar 

  487. Buzdar, A.U. (2002). Anastrozole (Arimidex) in clinical practice versus the old ‘gold standard’, tamoxifen. Expert. Rev. Anticancer. Ther. 2, 623–629.

    Article  PubMed  CAS  Google Scholar 

  488. Wellington, K. and D.M. Faulds (2002). Anastrozole: In early breast cancer. Drugs 62, 2483–2490.

    PubMed  CAS  Google Scholar 

  489. Miller, W.R., M. Stuart, T. Sahmoud, and J.M. Dixon (2002). Anastrozole (‘Arimidex’) blocks oestrogen synthesis both peripherally and within the breast in postmenopausal women with large operable breast cancer. Br. J. Cancer 87, 950–955.

    Article  PubMed  CAS  Google Scholar 

  490. Flynn, G.A., J.O. Johnston, C.L. Wright, and B.W. Metcalf (1981). The time-dependent inactivation of aromatase by 17-β-hydroxy-10-methylthioestra-1,4-dien-3-one. Biochem. Biophys. Res. Commun. 103, 913–918.

    Article  PubMed  CAS  Google Scholar 

  491. Bednarski, P.J. and S.D. Nelson (1989). Interactions of thiol-containing androgens with human placental aromatase. J. Med. Chem. 32, 203–213.

    Article  PubMed  CAS  Google Scholar 

  492. Wright, J.N., G. Slatcher, and M. Akhtar (1991). ’slow-binding’ sixth-ligand inhibitors of cytochrome P-450 aromatase. Studies with 19-thiomethyl-and 19-azido-androstenedione. Biochem. J. 273, 533–539.

    PubMed  CAS  Google Scholar 

  493. Delaisi, C., B. Coucet, C. Hartmann, B. Tric, J.F. Gourvest, and D. Lesuisse (1992). RU54115, a tight-binding aromatase inhibitor potentially useful for the treatment of breast cancer. J. Steroid Biochem. Mol. Biol. 41, 773–777.

    Article  PubMed  CAS  Google Scholar 

  494. Geelen, J.A.A., G.H. Deckers, J.T.H. Van Der Wardt, H.J.J. Loozen, L.J.W. Tax, and H.J. Kloosterboer (1991). Selection of 19-(ethyldithio)-androst-4-ene-3,17-dione (ORG 30958): A potent aromatase inhibitor in vivo. J. Steroid Biochem. Mol. Biol. 38, 181–188.

    Article  PubMed  CAS  Google Scholar 

  495. Lovett, J.A., M.V. Darby, and R.E. Counsell (1984). Synthesis and evaluation of 19-aza-and 19-aminoandrostenedione analogues as potential aromatase inhibitors. J. Med. Chem. 27, 734–740.

    Article  PubMed  CAS  Google Scholar 

  496. Johnston, J.O., C.L. Wright, and B.W. Metcalf (1984). Time-dependent inhibition of aromatase in trophoblastic tumor cells in tissue culture. J. Steroid Biochem. 20, 1221–1226.

    Article  PubMed  CAS  Google Scholar 

  497. Shih, M.-J., M.H. Carrell, H.L. Carrell, C.L. Wright, J.O. Johnston, and C.H. Robinson (1987). Stereoselective inhibition of aromatase by novel epoxysteroids. J. Chem. Soc., Chem. Commun. 213–214.

    Google Scholar 

  498. Childers, W.E. and C.H. Robinson (1987). Novel 10β-thiiranyl steroids as aromatase inhibitors. J. Chem. Soc., Chem. Commun. 320–321.

    Google Scholar 

  499. Childers, W.E., J.V. Silverton, J.T. Kellis, L.E. Vickery, and C.H. Robinson (1991). Inhibition of human placental aromatase by novel homologated 19-oxiranyl and 19-thiiranyl steroids. J. Med. Chem. 34, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  500. Kellis, J.T., W.E. Childers, C.H. Robinson, and L.E. Vickery (1987). Inhibition of aromatase cytochrome P-450 by 10-oxirane and 10-thiirane substituted androgens. Implications for the structure of the active site. J. Biol. Chem. 262, 4421–4426.

    PubMed  CAS  Google Scholar 

  501. Njar, V.C.O., E. Safi, J.V. Silverton, and C.H. Robinson (1993). Novel 10β-aziridinyl steroids: Inhibitors of aromatase. J. Chem. Soc. Perkin Trans. I 10, 1161–1168.

    Article  Google Scholar 

  502. Metcalf, B.W., C.L. Wright, J.P. Burkhan, and J.O. Johnston (1981). Substrate-induced inactivation of aromatase by allenic and acetylenic steroids. J. Am. Chem. Soc. 103, 3221–3222.

    Article  CAS  Google Scholar 

  503. Johnston, J.O. (1987). Biological characterization of 10-(2-propynyl)estr-4-ene-3,17-dione (MDL 18,962), an enzyme-activated inhibitor of aromatase. Steroids 50, 105–120.

    Article  PubMed  CAS  Google Scholar 

  504. Covey, D.G., W.F. Hood, and V.D. Parikh (1981). 10β-Propynyl-substituted steroids: Mechanism-based enzyme-activated irreversible inhibitors of estrogen biosynthesis. J. Biol. Chem. 256, 1076–1079.

    PubMed  CAS  Google Scholar 

  505. Brandt, M.E., D. Puett, D.F. Covey, and S.J. Zimniski. Characterization of pregnant mare’s serum gonadotropin-stimulated rat ovarian aromatase and its inhibition by 10-propargyl-estr-4-ene-3,17-dione. J. Steroid Biochem. 34, 317–324.

    Google Scholar 

  506. Marcotte, P.A. and C.H. Robinson (1982). Synthesis and evaluation of 10-beta-substituted 4-estrene-3,17-diones as inhibitors of human placental microsomal aromatase. Steroids 39, 325–344.

    Article  PubMed  CAS  Google Scholar 

  507. Numazawa, M., A. Mutsumi, N. Asano, and Y. Ito (1993). A time-dependent inactivation of aromatase by 19-substituted androst-4-ene-3,6,17-diones. Steroids 58, 40–46.

    Article  PubMed  CAS  Google Scholar 

  508. Marcotte, P.A. and C.H. Robinson (1982). Design of mechanism-based inactivators of human placental aromatase. Cancer Res. 42, 3322–3325.

    CAS  Google Scholar 

  509. Marcotte, P.A. and C.H. Robinson (1982). Inhibition and inactivation of estrogen synthetase (aromatase) by fluorinated substrate analogues. Biochemistry 21, 2773–2778.

    Article  PubMed  CAS  Google Scholar 

  510. Numazawa, M., A. Mutsumi, K. Hoshi, M. Oshibe, E. Ishikawa, and H. Kigawa (1991). Synthesis and biochemical studies of 16-and 19-substituted androst-4-enes as aromatase inhibitors. J. Med. Chem. 34, 2496–2504.

    Article  PubMed  CAS  Google Scholar 

  511. Mann, J. and B. Pietrzak (1987). Preparation of aromatase inhibitors. Synthesis of 19,19-difluoro-4-hydroxyandrost-4-ene-3,7-dione and related compounds. J. Chem. Soc. Perkin Trans. I 385–388.

    Google Scholar 

  512. Furth, P.S. and C.H. Robinson (1989). Tritium release from [19-3H]19,19-difluoroandrost-4-ene-3,17-dione during inactivation of aromatase. Biochemistry 28, 1254–1259.

    Article  PubMed  CAS  Google Scholar 

  513. Covey, D.F. and W.F. Hood (1982). Aromatase enzyme catalysis is involved in the potent inhibition of estrogen biosynthesis caused by 4-acetoxy-and 4-hydroxy-4-androstene-3,17-dione. Mol. Pharmacol. 21, 173–180.

    PubMed  CAS  Google Scholar 

  514. Brodie, A.M.H., W.M. Garrett, J.R. Hendrickson, C.-H. Tsai-Morris, P.A. Marcotte, and C.H. Robinson (1981). Inactivation of aromatase in vitro by 4-hydroxy-4-androstene-3,17-dione and 4-acetoxy-4-androstene-3,17-dione and sustained effects in vivo. Steroids 38, 693–702.

    Article  PubMed  CAS  Google Scholar 

  515. Brodie, A.M.H. (1994). Aromatase inhibitors in the treatment of breast cancer. J. Steroid. Biochem. Mol. Biol. 49, 281–287.

    Article  PubMed  CAS  Google Scholar 

  516. Di Salle, E., D. Giudici, G. Briatico, and G. Ornati (1990). Novel irreversible aromatase inhibitors. Ann. N. Y. Acad. Sci. 595, 357–367.

    Article  PubMed  Google Scholar 

  517. Di Salle, E., D. Giudici, G. Ornati, G. Briatico, R. D’Alessio, V. Villa et al. (1990). 4-Aminoandrostenedione derivatives: A novel class of irreversible aromatase inhibitors. Comparison with FCE 24304 and 4-hydroxyandrostenedione. J. Steroid Biochem. Mol. Biol. 37, 369–374.

    Article  PubMed  Google Scholar 

  518. Di Salle, E., G. Briatico, D. Giudici, G. Ornati, and T. Zaccheo (1989). Aromatase inhibition and experimental antitumor activity of FCE 24304, MDL 18962 and SH 489. J. Steroid Biochem. 34, 431–434.

    Article  PubMed  Google Scholar 

  519. Marsh, D.A., E.J. Brodie, W. Garrett, C.-H. Tsai-Morris, and A.M. Brodie (1985). Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives. J. Med. Chem. 28, 788–795.

    Article  PubMed  CAS  Google Scholar 

  520. Brodie, A.M.H., H.J. Brodie, W.M. Garrett, J.R. Hendrickson, D.H. Marsh, and C.-H. Tsai-Morris (1982). Effect of an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione, on 7,12-dimethyl-[a]-anthracene-induced mammary tumors in the rat and its mechanism of action in vivo. Biochem. Pharmacol. 31, 2017–2023.

    Article  PubMed  CAS  Google Scholar 

  521. Henderson, D., G. Norbisrath, and U. Kerb (1986). 1-Methyl-1,4-androstadiene-3,17-dione (SH 489): Characterization of an irreversible inhibitor of estrogen biosynthesis. J. Steroid Biochem. 24, 303–306.

    Article  PubMed  CAS  Google Scholar 

  522. Numazawa, M., A. Mutsumi, K. Hoshi, and Y. Tanaka (1992). Androst-5-ene-7,17-dione: A novel class of suicide substrate of aromatase. Biochem. Biophys. Res. Commun. 186, 32–39.

    Article  PubMed  CAS  Google Scholar 

  523. Covey, D.F. and W.F. Hood (1981). Enzyme-generated intermediates derived from 4-androstene-3,6,17-trione and 1,4,6-androstatriene-3,17-dione cause a time-dependent decrease in human placental aromatase activity. Endocrinology 108, 1597–1599.

    PubMed  CAS  Google Scholar 

  524. Numazawa, M., M. Tsuji, and A. Mutsumi (1987). Studies on aromatase inhibition with 4-androstene-3,6,17-trione: Its 3β-reduction and time-dependent irreversible binding to aromatase with human placental microsomes. J. Steroid Biochem. 28, 337–344.

    Article  PubMed  CAS  Google Scholar 

  525. Numazawa, M., K. Midzuhashi, and M. Nagaoka (1994). Metabolic aspects of the 1β-proton and the 19-methyl group of androst-4-ene-3,6,17-trione during aromatization by placental microsomes and inactivation of aromatase. Biochem. Pharmacol. 47, 717–726.

    Article  PubMed  CAS  Google Scholar 

  526. Di Salle, E., G. Ornati, D. Giudici, M. Lassus, T.R. Evans and R.C. Coombes (1992). Exemestane (FCE 24304), a new steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol. 43, 137–143.

    Article  PubMed  Google Scholar 

  527. Geisler, J., N. King, G. Anker, G. Ornati, E. Di Salle, P.E. Lonning et al. (1998). In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clin. Cancer Res. 4, 2089–2093.

    PubMed  CAS  Google Scholar 

  528. Clemett, D. and H.M. Lamb (2000). Exemestane: A review of its use in postmenopausal women with advanced breast cancer. Drugs 59, 1279–1296.

    Article  PubMed  CAS  Google Scholar 

  529. Brueggemeier, R.W. (2002). Overview of the pharmacology of the aromatase inactivator exemestane. Breast Cancer Res. Treat. 74, 177–185.

    Article  PubMed  CAS  Google Scholar 

  530. Dixon, J.M. (2002). Exemestane: A potent irreversible aromatase inactivator and a promising advance in breast cancer treatment. Expert Rev. Anticancer Ther. 2, 267–275.

    Article  PubMed  CAS  Google Scholar 

  531. Higa, G.M. (2002). Exemestane: Treatment of breast cancer with selective inactivation of aromatase. Am. J. Health Syst. Pharm. 59, 2194–2201.

    PubMed  CAS  Google Scholar 

  532. Longcope, C., A. Femino, and J.O. Johnston (1988). Inhibition of peripheral aromatization in baboons by an enzyme-activated aromatase inhibitor (MDL 18,962). Endocrinology 122, 2007–2011.

    PubMed  CAS  Google Scholar 

  533. Johnston, J.O. (1990). Studies with the steroidal aromatase inhibitor, 19-acetylenic androstenedione (MDL 18,962). J. Cancer Res. Clin. Oncol. 116, 880.

    Google Scholar 

  534. Covey, D.E., W.F. Hood, D.D. Bensen, and H.L. Carrell (1984). Hydroperoxides as inactivators of aromatase: 10-Beta-hydroperoxy-4-estrene-3,17-dione, crystal structure and inactivation characteristics. Biochemistry 23, 5398–5406.

    Article  PubMed  CAS  Google Scholar 

  535. Covey, D.F., W.F. Hood, and P.C. McMullan (1986). Studies of the inactivation of human placental aromatase by 17α-ethynyl-substituted 10β-hydroperoxy and related 19-nor steroids. Biochem. Pharmacol. 35, 1671–1674.

    Article  PubMed  CAS  Google Scholar 

  536. Bednarski, P.J., D.J. Porubek, and S.D. Nelson (1985). Thiol-containing androgens as suicide substrates of aromatase. J. Med. Chem. 28, 775–779.

    Article  PubMed  CAS  Google Scholar 

  537. Wright, J.N., van P.T. Leersum, S.G. Chamberlin and M. Akhtar (1989). Inhibition of aromatase by steroids substituted at C-19 with halogen, sulphur, and nitrogen. J. Chem. Soc. Perkin Trans. I 1647–1655.

    Google Scholar 

  538. Burkhart, J.P., N.P. Peet, C.L. Wright, and J.O. Johnston (1991). Novel time-dependent inhibitors of human placental aromatase. J. Med. Chem. 34, 1748–1750.

    Article  PubMed  CAS  Google Scholar 

  539. Numazawa, M., A. Yoshimura, M. Tachibana, M. Shelangouski, and M. Ishikawa (2002). Time-dependent aromatase inactivation by 4 beta,5 beta-epoxides of the natural substrate androstenedione and its 19-oxygenated analogs. Steroids 67, 185–193.

    Article  PubMed  CAS  Google Scholar 

  540. Vanden Bossche, H., G. Willemsens, W. Cools, P. Marichal and W. Lauwers (1983). Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem. Soc. Trans. 11, 665–667.

    CAS  Google Scholar 

  541. Mercer, E.I. (1991). Sterol biosynthesis inhibitors: Their current status and modes of action. Lipids 26, 584–597.

    Article  PubMed  CAS  Google Scholar 

  542. Berg, M. and M. Plempel (eds.) (1988). Sterol Biosynthesis Inhibitors. Horwood, Ellis.

    Google Scholar 

  543. Nes, W.R. (1974). Role of sterols in membranes. Lipids 9, 596–612.

    Article  PubMed  CAS  Google Scholar 

  544. Yeagle, P.L., R.B. Martin, A.K. Lala, H.K. Lin, and K. Block (1977). Differential effects of cholesterol and lanosterol on artificial membranes. Proc. Natl. Acad. Sci. USA 74, 4924–4926.

    Article  PubMed  CAS  Google Scholar 

  545. Freter, C.E., R.C. Laderson, and D.F. Sibert (1979). Membrane phospholipid alterations in response to sterol depletion of LM cells. J. Biol. Chem. 254, 6909–6916.

    PubMed  CAS  Google Scholar 

  546. Vanden Bossche, H., W. Lauwers, G. Willemsens, P. Marichal, F. Cornelissen and W. Cools (1984). Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: The inhibition of isoprenoid biosynthesis. Pestic. Sci. 15, 188–198.

    Article  Google Scholar 

  547. Heeres, J., M. De Brabander, and H. Vanden Bossche (1982). Ketoconazole: Chemistry and basis for selectivity. In P. Periti and G.G. Grossi (eds.), Current Chemotherapy and Immunotherapy, Vol. 2. American Society of Microbiology, Washington, D.C., pp. 1007–1009.

    Google Scholar 

  548. Willemsens, G., W. Cools, and H. Vanden Bossche (1980). Effects of miconazole and ketoconazole on sterol synthesis in a subcellular fraction of yeast and mammalian cells. In H. Van den Bossche (ed.), The Host-Invader Interplay Elsevier/North Holland, Amsterdam, pp. 691–694.

    Google Scholar 

  549. Murray, M., A.J. Ryan, and P.J. Little (1982). Inhibition of rat hepatic microsomal aminopyrine N-demethylase activity by benzimidazole derivatives: Quantitative structure-activity relationships. J. Med. Chem. 25, 887–892.

    Article  PubMed  CAS  Google Scholar 

  550. Santen, R.J., H. Vanden Bossche, J. Symoens, J. Brugmans, and R. DeCoster (1983). Site of action of low dose ketoconazole or androgen biosynthesis in men. J. Clin. Endocrinol. Metab. 57, 732–736.

    PubMed  CAS  Google Scholar 

  551. Albengres, E., H. Le Louet, and J.P. Tillement (1998). Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf. 18, 83–97.

    Article  PubMed  CAS  Google Scholar 

  552. Gahder, P., E.I. Mercer, B.C. Baldwin, and T.E. Wiggins (1983). A comparison of the potency of some fungicides as inhibitors of sterol 14-demethylation. Pest. Biochem. Physiol. 19, 1–10.

    Article  Google Scholar 

  553. Ito, T., Y. Aoyama, K. Ishida, M. Kudoh, K. Hori, S. Tsuchiya et al. (1994). Selectivity of isoprenoid-containing imidazole antifungal compounds for sterol 14-demethylase P450 (P450(14)DM) and 7-ethoxycoumarin O-deethylase P450 of rat liver microsomes. Biochem. Pharmacol. 48, 1577–1582.

    Article  PubMed  CAS  Google Scholar 

  554. Dolle, R.E., H.S. Allaudeen, and L.I. Kruse (1990). Design and synthesis of 14α-methyl-15-aza-D-homosterols as novel antimycotics. J. Med. Chem. 33, 877–880.

    Article  PubMed  CAS  Google Scholar 

  555. Frye, L.L., K.P. Cusack, D.A. Leonard, and J.A. Anderson (1994). Oxolanosterol oximes: Dualaction inhibitors of cholesterol biosynthesis. J. Lipid Res. 35, 1333–1344.

    PubMed  CAS  Google Scholar 

  556. Aoyama, Y., Y. Yoshida, Y. Sonoda, and Y. Sato (1987). 7-Oxo-24,25-dihydrolanosterol: A novel lanosterol 14α-demethylase (P-450 14DM) inhibitor which blocks electron transfer to the oxyferro intermediate. Biochim. Biophys. Acta. 922, 270–277.

    PubMed  CAS  Google Scholar 

  557. Trzaskos, J.M., R.T. Fischer, S.S. Ko, R.L. Magolda, S. Stam, P. Johnson et al. (1995). Substrate-based inhibitors of lanosterol 14 alpha-methyl demethylase: II. Time-dependent enzyme inactivation by selected oxylanosterol analogs. Biochemistry 34, 9677–9681

    Article  PubMed  CAS  Google Scholar 

  558. Trzaskos, J.M., R.L. Magolda, M.F. Favata, R.T. Fischer, P.R. Johnson, H.W. Chen et al. (1993). Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15α-fluorolanost-7-en-3β-ol. A mechanism-based inhibitor of cholesterol biosynthesis. J. Biol. Chem. 268, 22591–22599.

    PubMed  CAS  Google Scholar 

  559. Cooper, A.B., J.J. Wright, A.K. Ganguly, J. Desai, D. Loenberg, R. Parmegiani et al. (1989). Synthesis of 14-α-aminomethyl substituted lanosterol derivatives; inhibitors of fungal ergosterol biosynthesis. J. Chem. Soc., Chem. Commun. 898–900.

    Google Scholar 

  560. Frye, L.L., K.P. Cusack, and D.A. Leonard (1993). 32-Methyl-32-oxylanosterols: Dual-action inhibitors of cholesterol biosynthesis. J. Med. Chem. 36, 410–416.

    Article  PubMed  CAS  Google Scholar 

  561. Frye, L.L. and C.H. Robinson (1988). Novel inhibitors of lanosterol 14α-methyl demethylase, a critical enzyme in cholesterol biosynthesis. J. Chem. Soc. Chem. Commun. 129–131.

    Google Scholar 

  562. Mayer, R.J., J.L. Adams, M.J. Bossard, and T.A. Berkhout (1991). Effects of a novel lanosterol 14α-demethylase inhibitor on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hep G2 cells. J. Biol. Chem. 266, 20070–20078.

    PubMed  CAS  Google Scholar 

  563. Frye, L.L. and C.H. Robinson (1990). Synthesis of potential mechanism-based inactivators of lanosterol 14α-demethylase. J. Org. Chem. 55, 1579–1584.

    Article  CAS  Google Scholar 

  564. Tuck, S.F., C.H. Robinson, and J.V. Silverton (1991). Assessment of the active-site requirements of lanosterol 14α-demethylase: Evaluation of novel substrate analogues as competitive inhibitors. J. Org. Chem. 56, 1260–1266.

    Article  CAS  Google Scholar 

  565. Bossard, M.J., T.A. Tomaszek, T. Gallagher, B.W. Metcalf, and J.L. Adams (1991). Steroidal acetylenes: Mechanism-based inactivators of lanosterol 14α-demethylase. Bioorg. Chem. 19, 418–432.

    Article  CAS  Google Scholar 

  566. Swinney, D.C., O.Y. So, D.M. Watson, P.W. Berry, A.S. Webb, D.J. Kertesz et al. (1994). Selective inhibition of mammalian lanosterol 14 alpha-demethylase by RS-21607 in vitro and in vivo. Biochemistry 33, 4702–4713.

    Article  PubMed  CAS  Google Scholar 

  567. Clement, O.O., C.M. Freeman, R.W. Hartmann, V.D. Handratta, T.S. Vasaitis, A.M.H. Brodie et al. (2003). Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. J. Med. Chem. 46, 2345–2351.

    Article  PubMed  CAS  Google Scholar 

  568. Angelastro, M.R., M.E. Laughlin, G.L. Schatzman, P. Bey, and T.R. Blohm (1989). 17β-(Cyclopropylamino)-androst-5-en-3β-ol, a selective mechanism-based inhibitor of cytochrome P45017α(steroid 17α-hydroxylase/C17–20 lyase). Biochem. Biophys. Res. Commun. 162, 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  569. Njar, V.C., M. Hector, and R.W. Hartmann (1996). 20-amino and 20,21-aziridinyl pregnene steroids: Development of potent inhibitors of 17 alpha-hydroxylase/C17,20-lyase (P450 17). Bioorg. Med. Chem. 4, 1447–1453.

    Article  PubMed  CAS  Google Scholar 

  570. Ling, Y.Z., J.S. Li, Y. Liu, K. Kato, G.T. Klus, and A. Brodie (1997). 17-Imidazolyl, pyrazolyl, and isoxazolyl androstene derivatives. Novel steroidal inhibitors of human cytochrome C17,20-lyase (P450(17) alpha). J. Med. Chem. 40, 3297–3304.

    Article  PubMed  CAS  Google Scholar 

  571. Jarman, M., S.E. Barrie, and J.M. Llera (1998). The 16,17-double bond is needed for irreversible inhibition of human cytochrome P45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3beta-ol) and related steroidal inhibitors. J. Med. Chem. 41, 5375–5381.

    Article  PubMed  CAS  Google Scholar 

  572. Njar, V.C., K. Kato, I.P. Nnane, D.N. Grigoryev, B.J. Long, and A.M. Brodie (1998). Novel 17-azolyl steroids, potent inhibitors of human cytochrome 17 alpha-hydroxylase-C17,20-lyase (P450(17) alpha): Potential agents for the treatment of prostate cancer. J. Med. Chem. 41, 902–912.

    Article  PubMed  CAS  Google Scholar 

  573. Nnane, I.P., V.C. Njar, Y. Liu, Q. Lu, and A.M. Brodie (1999). Effects of novel 17-azolyl compounds on androgen synthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 71, 145–152.

    Article  PubMed  CAS  Google Scholar 

  574. Njar, V.C. and A.M. Brodie (1999). Inhibitors of 17alpha-hydroxylase/17,20-lyase (CYP17): Potential agents for the treatment of prostate cancer. Curr. Pharm. Des. 5, 163–180.

    PubMed  CAS  Google Scholar 

  575. Zhuang, Y., B.G. Wachall, and R.W. Hartmann (2000). Novel imidazolyl and triazolyl substituted biphenyl compounds: Synthesis and evaluation as nonsteroidal inhibitors of human 17alpha-hydroxylase-C17, 20-lyase (P450 17). Bioorg. Med. Chem. 8, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  576. Long, B.J., D.N. Grigoryev, I.P. Nnane, Y. Liu, Y.Z. Ling, and A.M. Brodie (2000). Antiandrogenic effects of novel androgen synthesis inhibitors on hormone-dependent prostate cancer. Cancer Res. 60, 6630–6640.

    PubMed  CAS  Google Scholar 

  577. Haidar, S., P.B. Ehmer, and R.W. Hartmann (2001). Novel steroidal pyrimidyl inhibitors of P450 17 (17 alpha-hydroxylase/C17–20-lyase). Arch. Pharm. (Weinheim) 334, 373–374.

    Article  CAS  Google Scholar 

  578. Burkhart, J.P., P.M. Weintraub, C.A. Gates, R.J. Resvick, R.J. Vaz, D. Friedrich et al. (2002). Novel steroidal vinyl fluorides as inhibitors of steroid C17 (20) lyase. Bioorg. Med. Chem. 10, 929–934.

    Article  PubMed  CAS  Google Scholar 

  579. Clement, O.O., C.M. Freeman, R.W. Hartmann, V.D. Handratta, T.S. Vasaitis, A.M. Brodie et al. (2003). Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. J. Med. Chem. 46, 2345–2351.

    Article  PubMed  CAS  Google Scholar 

  580. Haidar, S., P.B. Ehmer, S. Barassin, C. Batzl-Hartmann, and R.W. Hartmann (2003). Effects of novel 17alpha-hydroxylase/C17,20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 84, 555–562.

    PubMed  CAS  Google Scholar 

  581. Vinh, T.K., S.W. Yee, A.J. Kirby, P.J. Nicholls, and C. Simons (2001). 1-[(Benzofuran-2-yl)phenylmethyl]triazoles as steroidogenic inhibitors: Synthesis and in vitro inhibition of human placental CYP19 aromatase. Anticancer Drug Des. 16, 217–225.

    PubMed  CAS  Google Scholar 

  582. Berg, A.M., A.B. Kickman, E. Miao, A. Cochran, S.R. Wilson, and W.H. Orme-Johnson (1990). Effects of inhibitors of cytochrome P-45017α on steroid production in mouse Leydig cells and mouse and pig testes microsomes. Biochemistry 29, 2193–2201.

    Google Scholar 

  583. Viger, A., S. Coustal, S. Perard, B. Chappe, and A. Marquet (1988). Synthesis and activity of new inhibitors of aldosterone biosynthesis. J. Steroid Biochem. 30, 469–472.

    Article  PubMed  CAS  Google Scholar 

  584. Viger, A., S. Coustal, S. Perard, A. Piffeteau, and A. Marquet (1989). 18-Substituted progesterone derivatives as inhibitors of aldosterone biosynthesis. J. Steroid Biochem. 33, 119–124.

    Article  PubMed  CAS  Google Scholar 

  585. Gomez-Sanchez, C.E., S. Chiou, and N. Yamakita (1993). 18-Ethynyl-deoxycorticosterone inhibition of steroid production is different in freshly isolated compared to cultured calf zona glomerulosa cells. J. Steroid Biochem. Mol. Biol. 46, 805–810.

    Article  PubMed  CAS  Google Scholar 

  586. Johnston, J.O., C.L. Wright, R.A. Bohnke, and P.R. Kastner (1991). Inhibition of aldosterone biosynthesis in primates by 18-acetylenic deoxycorticosterone. Endocrinology 128 (Suppl. Abstract 24).

    Google Scholar 

  587. Kupfer, D. (1982). Endogenous substrates of monooxygenases: Fatty acids and prostaglandins. In J.B. Schenkman and D. Kupfer (eds), Hepatic Cytochrome P450 Monooxygenase System. Pergamon Press, Elmsford, NY, pp. 157–190.

    Google Scholar 

  588. Kupfer, D. (1980). Endogenous substrates of monooxygenases: Fatty acids and prostaglandins. Pharmacol. Ther. 11, 469–496.

    Article  PubMed  CAS  Google Scholar 

  589. Hirt, D.L. and H.R. Jacobson (1991). Functional effects of cytochrome P450 arachidonate metabolites in the kidney. Semin. Nephrol. 11, 148–155.

    PubMed  CAS  Google Scholar 

  590. McGiff, J.C., C.P. Quilley, and M.A. Carroll (1993). The contribution of cytochrome P450-dependent arachidonate metabolites to integrated renal function. Steroids 58, 573–579.

    Article  PubMed  CAS  Google Scholar 

  591. Harder, D.R., W.B. Campbell, and R.J. Roman (1995). Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J. Vasc. Res. 32, 79–92.

    PubMed  CAS  Google Scholar 

  592. Roman, R.J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 82, 131–185.

    PubMed  CAS  Google Scholar 

  593. Hoagland, K.M., K.G. Maier, C. Moreno, M. Yu, and R.J. Roman (2001). Cytochrome P450 metabolites of arachidonic acid: Novel regulators of renal function. Nephrol. Dial. Transplant. 16, 2283–2285.

    Article  PubMed  CAS  Google Scholar 

  594. Maier, K.G. and R.J. Roman (2001). Cytochrome P450 metabolites of arachidonic acid in the control of renal function. Curr. Opin. Nephrol. Hypertens. 10, 81–87.

    Article  PubMed  CAS  Google Scholar 

  595. Roman, R.J., K.G. Maier, C.W. Sun, D.R. Harder, and M. Alonso-Galicia (2000). Renal and cardiovascular actions of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids. Clin. Exp. Pharmacol. Physiol. 27, 855–865.

    Article  PubMed  CAS  Google Scholar 

  596. Roman, R.J., M. Alonso-Galicia, and T.W. Wilson (1997). Renal P450 metabolites of arachidonic acid and the development of hypertension in Dahl salt-sensitive rats. Am. J. Hypertens. 10, 63S–67S.

    PubMed  CAS  Google Scholar 

  597. Zou, A.P., Y.H. Ma, Z.H. Sui, P.R. Ortiz de Montellano, J.E. Clark, B.S. Masters et al. (1994). Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid ω-hydroxylase, on renal function in rats. J. Pharmacol. Exp. Ther. 268, 474–481.

    PubMed  CAS  Google Scholar 

  598. Imig, J.D., A.P. Zou, P.R. Ortiz de Montellano, Z. Sui, and R.J. Roman (1994). Cytochrome P-450 inhibitors alter afferent arteriolar responses to elevations in pressure. Am. J. Physiol. 266, H1879–H1885.

    PubMed  CAS  Google Scholar 

  599. Alkayed, N.J., E.K. Birks, A.G. Hudetz, R.J. Roman, L. Henderson, and D.R. Harder, (1996). Inhibition of brain P-450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am. J. Physiol. 271, H1541–H1546.

    PubMed  CAS  Google Scholar 

  600. Messer-Letienne, I., N. Bernard, R.J. Roman, J. Sassard, and D. Benzoni (1999). Cytochrome P-450 arachidonate metabolite inhibition improves renal function in Lyon hypertensive rats. Am. J. Hypertens. 12, 398–404.

    Article  PubMed  CAS  Google Scholar 

  601. Wang, M.H., E. Brand-Schieber, B.A. Zand, X. Nguyen, J.R. Falck, N. Balu et al. (1998). Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: Characterization of selective inhibitors. J. Pharmacol. Exp. Ther. 284, 966–973.

    PubMed  CAS  Google Scholar 

  602. Alonso-Galicia, M., K.G. Maier, A.S. Greene, A.W. Cowley, rJr., and R.J. Roman (2002). Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R60–R68.

    PubMed  CAS  Google Scholar 

  603. Alonso-Galicia, M., C.W. Sun, J.R. Falck, D.R. Harder, and R.J. Roman (1998). Contribution of 20-HETE to the vasodilator actions of nitric oxide in renal arteries. J. Physiol. 275, F370–F378.

    CAS  Google Scholar 

  604. Quigley, R., M. Baum, K.M. Reddy, J.C. Griener, and J.R. Falck (2000). Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport. Am. J. Physiol. Renal. Physiol. 278, F949–953.

    PubMed  CAS  Google Scholar 

  605. Frisbee, J.C., R.J. Roman, U.M. Krishna, J.R. Falck, and J.H. Lombard (2001). Relative contributions of cyclooxygenase-and cytochrome P450 omega-hydroxylase-dependent pathways to hypoxic dilation of skeletal muscle resistance arteries. J. Vasc. Res. 38, 305–314.

    Article  PubMed  CAS  Google Scholar 

  606. Frisbee, J.C., R.J. Roman, J.R. Falck, U.M. Krishna, and J.H. Lombard (2001). 20-HETE contributes to myogenic activation of skeletal muscle resistance arteries in Brown Norway and Sprague-Dawley rats. Microcirculation 8, 45–55.

    Article  PubMed  CAS  Google Scholar 

  607. Kunert, M.P., R.J. Roman, J.R. Flack, and J.H. Lombard (2001). Differential effect of cytochrome P-450 omega-hydroxylase inhibition on O2-induced constriction of arterioles in SHR with early and established hypertension. Microcirculation 8, 435–443.

    Article  PubMed  CAS  Google Scholar 

  608. Miyata, N., K. Taniguchi, T. Seki, T. Ishimoto, M. Sato-Watanabe, Y. Yasuda et al. (2001). HET0016, a potent and selective inhibitor of 20-HETE synthesizing enzyme. Br. J. Pharmacol. 133, 325–329.

    Article  PubMed  CAS  Google Scholar 

  609. Ortiz de Montellano, P.R. and N.O. Reich (1984). Specific inactivation of hepatic fatty acid hydroxylases by acetylenic fatty acids. J. Biol. Chem. 259, 4136–4141.

    PubMed  CAS  Google Scholar 

  610. CaJacob, C.A. and P.R. Ortiz de Montellano (1986). Mechanism-based in vivo inactivation of lauric acid hydroxylases. Biochemistry 25, 4705–4711.

    Article  PubMed  CAS  Google Scholar 

  611. Xu, F., W.O. Straub, W. Pak, P. Su, K.G. Maier, M. Yu et al. (2002). Antihypertensive effect of mechanism-based inhibition of renal arachidonic acid omega-hydroxylase activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R710–720.

    PubMed  CAS  Google Scholar 

  612. Zou, A.P., J.D. Imig, M. Kaldunski, P.R. Ortiz de Montellano, Z. Sui, and R.J. Roman (1994). Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. Am. J. Physiol. 266, F275–282.

    PubMed  CAS  Google Scholar 

  613. Zou, A.P., J.D. Imig, P.R. Ortiz de Montellano, Z. Sui, J.R. Falck, and R.J. Roman (1994). Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am. J. Physiol. 266, F934–F941.

    PubMed  CAS  Google Scholar 

  614. Zou, A.P., J.T. Fleming, J.R. Falck, E.R. Jacobs, D. Gebremedhin, D.R. Harder et al. (1996). 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am. J. Physiol. 270, R228–R237.

    PubMed  CAS  Google Scholar 

  615. Stec, D.E., D.L. Mattson, and R.J. Roman (1997). Inhibition of renal outer medullary 20-HETE production produces hypertension in Lewis rats. Hypertension. 29, 315–319.

    PubMed  CAS  Google Scholar 

  616. Evans, R.G., K.H. Day, R.J. Roman, K.H. Hopp, and W.P. Anderson (1998). Effects of intrarenal infusion of 17-octadecynoic acid on renal antihypertensive m echanisms in anesthetized rabbits. Am. J. Hypertens. 11, 803–812.

    Article  PubMed  CAS  Google Scholar 

  617. Sun, C.W., M. Alonso-Galicia, M.R. Taheri, J.R. Falck, D.R. Harder, and R.J. Roman (1998). Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circ. Res. 83, 1069–1079.

    PubMed  CAS  Google Scholar 

  618. Messer-Letienne, I., N. Bernard, R.J. Roman, J. Sassard, and D. Benzoni (1999). 20-Hydroxyeicosatetraenoic acid and renal function in Lyon hypertensive rats. Eur. J. Pharmacol. 378, 291–297.

    Article  PubMed  CAS  Google Scholar 

  619. Shak, S. I. and Goldstein (1984). Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. J. Biol. Chem. 259, 10181–10187.

    PubMed  CAS  Google Scholar 

  620. Kikuta, Y., E. Kusunose, K. Endo, S. Yamamoto, K. Sogawa, Y. Fujii-Kuriyama et al. (1993). A novel form of cytochrome P-450 family 4 in human polymorphonuclear leukocytes. cDNA cloning and expression of leukotriene B4 ω-hydroxylase. J. Biol. Chem. 268, 9376–9380.

    PubMed  CAS  Google Scholar 

  621. Clancy, R.M., C.A. Dahinden, and T.E. Hugli (1984). Oxidation of leukotrienes at the ω-end: Demonstration of a receptor for the 20-hydroxy derivative of leukotriene B4 on human neutrophils and implications for the analysis of leukotriene receptors. Proc. Natl. Acad. Sci. USA 81, 5729–5733.

    Article  PubMed  CAS  Google Scholar 

  622. Shak, S., N.O. Reich, I.M. Goldstein, and P.R. Ortiz de Montellano (1985). Leukotriene B4 ω-hydroxylase in human polymorphonuclear leukocytes: Suicidal inactivation by acetylenic fatty acids. J. Biol. Chem. 260, 13023–13028.

    PubMed  CAS  Google Scholar 

  623. Williams, D.E., A.S. Muerhoff, N.O. Reich, C.A. CaJacob, P.R. Ortiz de Montellano, and B.S.S. Masters (1989). Prostaglandin and fatty acid ω and (ω-1) oxidation in rabbit lung. Acetylenic fatty acid mechanism based inactivators as specific inhibitors. J. Biol. Chem. 264, 749–756.

    PubMed  Google Scholar 

  624. Amaral, S.L., K.G. Maier, D.N. Schippers, R.J. Roman, and A.S. Greene (2003). CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 284, H1528–H1535.

    PubMed  CAS  Google Scholar 

  625. Wang, M.H., B.A. Zand, A. Nasjletti, and M. Laniado-Schwartzman (2002). Renal 20-hydroxyeicosatetraenoic acid synthesis during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R383–R389.

    PubMed  CAS  Google Scholar 

  626. Nguyen, X., M.H. Wang, K.M. Reddy, J.R. Falck, and M.L. Schwartzman (1999). Kinetic profile of the rat CYP4A isoforms: Arachidonic acid metabolism and isoform-specific inhibitors. Am. J. Physiol. 276, R1691–R1700.

    PubMed  CAS  Google Scholar 

  627. Brand-Schieber, E., J.F. Falck, and M. Schwartzman (2000). Selective inhibition of arachidonic acid epoxidation in vivo. J. Physiol. Pharmacol. 51, 655–672.

    PubMed  CAS  Google Scholar 

  628. Fulco, A.J. (1991). P450BM-3 and other inducible bacterial P450 cytochromes: Biochemistry and regulation. Ann. Rev. Pharmacol. Toxicol. 31, 177–203.

    Article  CAS  Google Scholar 

  629. Salaun, J.P., D. Reichhart, A. Simon, F. Durst, N.O. Reich, and P.R. Ortiz de Montellano (1984). Autocatalytic inactivation of plant cytochrome P-450 enzymes: Selective inactivation of the lauric acid in-chain hydroxylase from Helianthus tuberosus L. by unsaturated substrate analogs. Arch. Biochem. Biophys. 232, 1–7.

    Article  PubMed  CAS  Google Scholar 

  630. Shirane, N., Z. Sui, J.A. Peterson, and P.R. Ortiz de Montellano (1993). Cytochrome P450BM-3 (CYP102): Regiospecificity of oxidation of ω-unsaturated fatty acids and mechanism-based inactivation. Biochemistry 32, 13732–13741.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Correia, M.A., Ortiz de Montellano, P.R. (2005). Inhibition of Cytochrome P450 Enzymes. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics