Regular Article
Millimeter-Wave Spectroscopy, High-Resolution Infrared Spectrum, ab Initio Calculations, and Molecular Geometry of FPS

https://doi.org/10.1006/jmsp.2001.8462Get rights and content

Abstract

The transient thiophosphenous fluoride FPS was produced by pyrolysis of 2.5% F2PSPF2 in Ar at 1300–1800°C. High-resolution (≥0.004 cm−1) Fourier transform infrared spectra of the a-type ν1 and b-type ν2 bands, centered respectively at 803.249 and 726.268 cm−1, were measured and fitted to rotational and quartic centrifugal distortion parameters. The millimeter-wave spectrum, essentially b-type, was measured between 300 and 370 GHz in the ground state and in the ν3 excited state for FP32S and in the ground state for FP34S. The frequencies were fitted to a Watson-type A-reduced Hamiltonian up to sextic distortion terms. High level ab initio calculations with large basis sets were performed on FPS and supported the first identification of its infrared and millimeter wave spectra. The calculated anharmonic force field provided precise ab initio rovibrational α constants which were combined with the experimental molecular parameters to determine an accurate equilibrium structure of the molecule: re(PS)=188.86 pm, re(PF)=158.70 pm, θ(FPS)=109.28°. The collision-controlled 1/e lifetime measured in a 10-Pa (1 : 20) F2PSPF2/Ar mixture was 2 s, more than two orders of magnitude larger than that of FPO under the same experimental conditions.

Section snippets

Supplementary Files

1 - This Supplementary material contains 10 Tables:

Table S1: Computed “RCCSD(T)” and experimental equilibrium bond lengths (pm) in PS (X2Πr) and PF (X3Σ).

Table S2: Computed harmonic vibrational wavenumbers (cm−1) of FP32S.

Table S3: Computed (MP2/VQZ+1) anharmonicity constants xij (cm−1) and anharmonicity corrections ωi−νi (cm−1) of FP32S and FP34S.

Table S4: Quadratic, cubic and quartic force constantsa of FPS in internal coordinates.

Table S5: Computed (MP2/AVQZ+1) components of the equilibrium

References (63)

  • A. Nowek et al.

    J. Mol. Struct.

    (1997)
  • M.T. Nguyen et al.

    J. Organomet. Chem.

    (1997)
  • M. Larzillière et al.

    Chem. Phys.

    (1980)
  • I.S. Bell et al.

    J. Mol. Spectrosc.

    (1999)
  • I.S. Bell et al.

    Chem. Phys. Lett.

    (2000)
  • M. Bogey et al.

    J. Mol. Spectrosc.

    (1997)
  • K. Raghavachari et al.

    Chem. Phys. Lett.

    (1989)
  • J.M.L. Martin et al.

    Chem. Phys. Lett.

    (1998)
  • J.M.L. Martin et al.

    Chem. Phys. Lett.

    (1994)
  • W. Schneider et al.

    Chem. Phys. Lett.

    (1989)
  • K. Kawaguchi et al.

    J. Mol. Spectrosc.

    (1988)
  • K.L. Bak et al.

    Chem. Phys. Lett.

    (2000)
  • D.A. Clabo et al.

    Chem. Phys.

    (1988)
  • K.-I. Karakida et al.

    Inorg. Chim. Acta

    (1976)
  • M. Binnewies et al.

    Chem. Rev.

    (1990)
  • R. Ahlrichs et al.

    J. Am. Chem. Soc.

    (1986)
  • M. Binnewies et al.

    Z. Anorg. Allg. Chem.

    (1983)
  • M. Binnewies et al.

    Z. Anorg. Allg. Chem.

    (1986)
  • H. Schnöckel et al.

    Z. Anorg. Allg. Chem.

    (1987)
  • H. Schnöckel et al.

    Z. Anorg. Allg. Chem.

    (1987)
  • H. Schnöckel et al.

    Z. Anorg. Allg. Chem.

    (1983)
  • H. Schnöckel et al.

    Z. Anorg. Allg. Chem.

    (1987)
  • M. Binnewies et al.

    High Temp. Sci.

    (1986)
  • M. Binnewies et al.

    Angew. Chem.

    (1984)
  • M. Binnewies et al.

    Angew. Chem. Int. Ed. Engl.

    (1984)
  • H. Bock et al.

    J. Chem. Soc. Chem. Commun.

    (1992)
  • L.D. Quin et al.
  • W.W. Schoeller et al.

    J. Chem. Soc. Chem. Commun.

    (1982)
  • B. Brupbacher-Gatehouse et al.

    J. Chem. Phys.

    (1999)
  • B. Gatehouse et al.

    J. Phys. Chem. A

    (1999)
  • I.S. Bell et al.

    J. Phys. Chem. A

    (1998)
  • Cited by (9)

    View all citing articles on Scopus
    1

    To whom correspondence should be addressed. Fax: 33 3 20 33 64 63. E-mail: [email protected].

    View full text