Eksperimental'noe issledovanie peredatochnoy funktsii prototipa sverkhprovodyashchego gauss-neyrona

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transfer function of a shunted two-junction interferometer, which was previously proposed as a basic element of superconducting neural networks based on radial basis functions, has been measured for the first time. The sample has been implemented in the form of a multilayer thin-film structure over a thick superconducting screen with the inductive supply of an input signal and the readout of an output signal. It has been found that the transfer function is the sum of the linear and periodic bell-shaped components. The linear component is likely due to the direct transfer of the input magnetic flux to the measuring circuit. The shape of the nonlinear component, which is the output signal of a Gauss neuron, can be approximately described by a Gaussian distribution function or, more precisely, by a parametric dependence derived theoretically in previous works. It has been shown that the transfer function of the Gauss neuron can depend on the choice of the working point of the measuring circuit, which promotes the development of integrated neural networks based on implemented elements.

About the authors

A. S. Ionin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

L. N. Karelina

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

N. S. Shuravin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

M. S. Sidel'nikov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

F. A. Razorenov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

S. V. Egorov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

V. V. Bol'ginov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Author for correspondence.
Email: bolg@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

References

  1. K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami, T. Tanimoto, T. Ono, J. Kim, and K. Inoue, IEEE Micro 41(3), 19 (2021).
  2. P. Crotty, D. Schult, and K. Segall, Phys. Rev. E 82(1), 011914 (2010).
  3. M. L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall, P. F. Hopkins, P.D. Dresselhaus, S.P. Benz, and W.H. Rippard, Sci. Adv. 4(1), e1701329 (2018).
  4. M. L. Schneider and K. Segall, J. Appl. Phys. 128, 214903 (2020).
  5. M. L. Schneider, C.A. Donnelly, and S.E. Russek, J. Appl. Phys. 124, 161102 (2018).
  6. K.K. Likharev and V.K. Semenov, IEEE Trans. Appl. Supercond. 1(1), 3 (1991).
  7. O.A. Mukhanov, V.K. Semenov, and K.K. Likharev, IEEE Trans. Magn. 23, 759 (1987).
  8. P. Bunyk, K.K. Likharev, and D. Zinoviev, Int. J. High Speed Electron. Syst. 11, 257 (2001).
  9. I. I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Yu. Kupriyanov, A.L. Gudkov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 8, 2689 (2017).
  10. A.E. Schegolev, N.V. Klenov, G. I. Gubochkin, M.Yu. Kupriyanov, and I. I. Soloviev, Nanomaterials 13, 2101 (2023).
  11. O.V. Skryabina, A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, A.G. Shishkin, S.V. Sotnichuk, K. S. Napolskii, I.A. Nazhestkin, I. I. Soloviev, M.Yu. Kupriyanov, and V. S. Stolyarov, Nanomaterials 12, 1671 (2022).
  12. V. Semenov, E. Golden, and S. Tolpygo, IEEE Transactions on Applied Superconductivity 32, 1-5 (2021).
  13. V. Semenov, E. Golden, and S. Tolpygo, IEEE Trans. Appl. Supercond. 33, 1 (2023).
  14. N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, Supercond. Sci. Technol. 26(3), 035010 (2013).
  15. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, J. Appl. Phys. 117(17), 173912 (2015).
  16. Q. Xu, Y. Yamanashi, C. L. Ayala, N. Takeuchi, T. Ortlepp, and N. Yoshikawa, Design of an extremely energy-efficient hardware algorithm using adiabatic superconductor logic 2015, 15th International Superconductive Electronics Conference (ISEC), Nagoya, Japan (2015), p. 1 (2015).
  17. A. S. Sidorenko, S.V. Bakurskiy, Yu. Savva et al. (Collaboration), International Journal of Circuits, Systems and Signal Processing 17, 177 (2023).
  18. A.E. Schegolev, N.V. Klenov, I. I. Soloviev, and M.V. Tereshonok, Beilstein J. Nanotechnol 7, 1397 (2016).
  19. N.V. Klenov, A.E. Schegolev, I. I. Soloviev, S.V. Bakurskiy, and M.V. Tereshonok, IEEE Trans. Appl. Supercond. 28(7), 1301006 (2018).
  20. I. I. Soloviev, A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, M.Yu. Kupriyanov, M.V. Tereshonok, A.V. Shadrin, V. S. Stolyarov, and A.A. Golubov, J. Appl. Phys. 124(15), 152113 (2018).
  21. N.V. Klenov, A.V. Kuznetsov, A.E. Schegolev, I. I. Soloviev, S.V. Bakursky, M.Yu. Kupriyanov, and M.V. Tereshonok, Low Temp. Phys. 45(7), 769 (2019).
  22. S. Bakurskiy, M. Kupriyanov, N.V. Klenov, I. Soloviev, A. Schegolev, R. Morari, Yu. Khaydukov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 11, 1336 (2020).
  23. A.E. Schegolev, N.V. Klenov, I. I. Soloviev, A. L. Gudkov, and M.V. Tereshonok, Nanobiotechnology Reports 16(6), 811 (2021).
  24. A. Schegolev, N. Klenov, I. Soloviev, and M. Tereshonok, Supercond. Sci. Technol. 34(1), 015006 (2021).
  25. M. Bastrakova, A. Gorchavkina, A. Schegolev, N. Klenov, I. Soloviev, A. Satanin, and M. Tereshonok, Symmetry 13(9), 1735 (2021).
  26. A.E. Schegolev, N.V. Klenov, S.V. Bakurskiy, I. I. Soloviev, M.Yu. Kupriyanov, M.V. Tereshonok, and A. S. Sidorenko, Beilstein J. Nanotechnol. 13, 444 (2022).
  27. M.V. Bastrakova, D. S. Pashin, D.A. Rybin, A.E. Schegolev, N.V. Klenov, I. I. Soloviev, A.A. Gorchavkina, and A.M. Satanin, Beilstein J. Nanotechnol. 13, 653 (2022).
  28. L.N. Kanal, Encyclopedia of Computer Science, John Wiley and Sons Ltd., Chichester, UK (2003), p. 1383.
  29. В.В. Шмидт, Введение в физику сверхпроводников, 2-е изд., МЦНМО, М. (2000).
  30. A. I. Gubin, K. S. Il'in, S.A. Vitusevich, M. Siegel, and N. Klein, Phys. Rev. B 72, 064503 (2005).
  31. А.С. Ионин, Н.С. Шуравин, Л.Н. Карелина, А.Н. Россоленко, М.С. Сидельников, С. В. Егоров, В.И. Чичков, М.В. Чичков, М.В. Жданова, А.Е. Щеголев, В. В. Больгинов, ЖЭТФ 164(6(12)), 1 (2023).
  32. А. Бароне, Дж. Паттерно, Эффект Джозефсона, Мир, М. (1984).
  33. К.К. Лихарев, Введение в динамику джозефсоновских переходов, Наука, М. (1985).
  34. С. В. Бакурский, Н.В. Кленов, М.Ю. Куприянов, И.И. Соловьев, М.М. Хапаев,Журнал вычислительной математики и математической физики 61(5), 885 (2021).
  35. М.М. Хапаев, М.Ю. Куприянов, Дифференциальные уравнения 58(8), 1148 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies