Obshchetermodinamicheskiy podkhod dlya opisaniya kinetiki teplovykh effektov v vysokoentropiynykh amorfnykh splavakh

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В рамках общетермодинамического подхода предложен метод расчета тепловых эффектов, возникающих при термической обработке высокоэнтропийных аморфных сплавов. Экспериментальная верификация предложенного метода показала, что экзотермический эффект, наблюдаемый ниже калориметрической температуры стеклования, эндотермический эффект в области стеклования и экзотермический эффект, возникающий в процессе кристаллизации аморфного сплава, могут быть количественно описаны при учете диаэластического эффекта с использованием общего термодинамического уравнения изменения энтропии сплава.

About the authors

A. S. Makarov

Воронежский государственный педагогический университет

Email: a.s.makarov.vrn@gmail.com

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
  2. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004).
  3. E. P. George, D. Raabe, and R. P. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
  4. Б. Р. Гельчинский, И. А. Балякин, А. А. Юрьев, А. А. Ремпель, Успехи химии 91, RCR5023 (2022)
  5. B. R. Gelchinski, I. A. Balyakin, A. A. Yuryev, and A. A. Rempel, Russ. Chem. Rev. 91, RCR5023 (2022).
  6. A. Takeuchi, N. Chen, T. Wada, W. Zhang, Y. Yokoyama, A. Inoue, and J. W. Yeh, Procedia Eng. 36, 226 (2012).
  7. Y. Chen, Z. W. Dai, and J. Z. Jiang, J. Alloys Compd. 866, 158852 (2021).
  8. S. F. Zhao, Y. Shao, X. Liu, N. Chen, H. Y. Ding, and K. F. Yao, Mater. Des. 87, 625 (2015).
  9. Y. Wang, Z. Zhu, A. Wang, and H. Zhang, J. Non-Cryst. Solids 577, 121323 (2022).
  10. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Mater. Trans. 55, 165 (2014).
  11. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 115, 308 (2022)
  12. R. A. Konchakov, A. S. Makarov, A. S. Aronin, N. P. Kobelev, and V. A. Khonik, JETP Lett. 115, 280 (2022).
  13. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Физматлит, М. (2002), ч. 1, 616 с.
  14. L. D. Landau and Е. М. Lifshitz, Statistical Physics., Butterworth-Heinemann, Oxford (1980), P. 1, 564 p.
  15. С. В. Немилов, ЖФХ 42, 391 (1968)
  16. S. V. Nemilov, Zh. Fiz. Khim. 42, 391 (1968).
  17. S. V. Nemilov, J. Non-Cryst. Solids 352, 2715 (2006).
  18. J. C. Dyre, N. B. Olsen, and T. Christensen, Phys. Rev. B 53, 2171 (1996).
  19. V. A. Khonik, Yu. P. Mitrofanov, S. A. Lyakhov, A. N. Vasiliev, S. V. Khonik, and D. A. Khoviv, Phys. Rev. B 79, 132204 (2009).
  20. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
  21. W. W. Wang, Prog. Mater. Sci. 57, 487656 (2012).
  22. V. A. Khonik and N. P. Kobelev, Metals 9, 605 (2019).
  23. C. A. Gordon and A. V. Granato, Mater. Sci. Eng. A 370, 83 (2004).
  24. A. Makarov, M. Kretova, G. Afonin, N. Kobelev, and V. Khonik, Metals 12, 1964 (2022).
  25. А. Н. Васильев, Ю. П. Гайдуков, УФН 141, 431 (1983)
  26. A. N. Vasil'ev and Yu. P. Gaidukov, Sov. Phys. Usp. 26, 952 (1983).
  27. H. Y. Ding, Y. Shao, P. Gong, J. F. Li, and K. F. Yao, Mater. Lett. 125, 151 (2014).
  28. T. Wada, J. Jiang, K. Yubuta, H. Kato, and A. Takeuchi, Materialia 7, 100372 (2019).
  29. L. T. Zhang, Y. J. Duan, T. Wada, H. Kato, J. M. Pelletier, D. Crespo, E. Pineda, and J. C. Qiao, J. Mater. Sci. Technol. 83, 248 (2021).
  30. Y. J. Duan, J. C. Qiao, D. Crespo, E. V. Goncharova, A. S. Makarov, G. V. Afonin, and V. A. Khonik, J. Alloys Compd. 830, 154564 (2020).
  31. А. С. Макаров, Е. В. Гончарова, Г. В. Афонин, Ц. Ч. Цзиао, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 111, 691 (2020)
  32. A. S. Makarov, E. V. Goncharova, G. V. Afonin, J. C. Qiao, N. P. Kobelev, and V. A. Khonik, JETP Lett. 111, 586 (2020).
  33. A. S. Makarov, Yu. P. Mitrofanov, E. V. Goncharova, J. C. Qiao, N. P. Kobelev, A. M. Glezer, and V. A. Khonik, Intermetallics 125, 10691 (2020).
  34. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).
  35. A. V. Granato, Eur. J. Phys. 87, 18 (2014).
  36. E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, A. Yu. Vinogradov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Cond. Matter. 28, 215401 (2016).
  37. Е. В. Гончарова, А. С. Макаров, Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 106, 39 (2017)
  38. E. V. Goncharova, A. S. Makarov, R. A. Konchakov, N. P. Kobelev, and V. A. Khonik, JETP Lett. 106, 35 (2017).
  39. W. Ingle, R. C. Perrin, and H. R. Schober, J. Phys. F: Met. Phys. 11, 1161 (1981).
  40. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies