Sverkhtonkiy kristall tellurida germaniya v sil'nom femtosekundnom lazernom pole: proyavlenie kvantovorazmernogo effekta

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

С помощью импульсного электронографа исследовано поведение тонкопленочного кристалла GeTe (GT), индуцированное воздействием интенсивных лазерных импульсов фемтосекундной длительности (λ = 0.8 мкм). В качестве образца использовалась отожженная 20-нм пленка GT на медной сетке с углеродным покрытием. Установлено, что в результате лазерной абляции сформирован сверхтонкий кристалл теллурида германия (предположительно, монослой GeTe), обладающий высокой лучевой стойкостью. Обсуждаются возможные причины обнаруженного наноразмерного эффекта.

References

  1. M. Wuttig, H. Bhaskaran, and T. Taubner, Nature Photon. 11, 465 (2017).
  2. С. А. Козюхин, П. И. Лазаренко, А. И. Попов, И. Л. Еременко, Успехи химии 91, RCR5033 (2022).
  3. B. J. Kooi and M. Wuttig, Adv. Mater. 32, 1908302 (2020).
  4. P. Kerres, Y. Zhou, H. Vaishnav et al. (Collaboration), Small 18, 2201753 (2022).
  5. H. Wu, W. Han, and X. Zhang, Materials 15, 6760 (2022).
  6. L. Waldecker, T. A. Miller, M.Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, Nature Mater. 14, 991 (2015).
  7. Y. Qi, N. Chen, Th. Vasileiadis, D. Zahn, H. Seiler, X. Li, and R. Ernstorfer, Phys. Rev. Lett. 129, 135701 (2022).
  8. T. Kunkel, Y. Vorobyov, M. Smayev, P. Lazarenko, Al. Kolobov, and S. Kozyukhin, Appl. Surf. Sci. 624, 157122 (2023).
  9. J. M. Leger and A. M. Redon, J. Phys.: Condens. Matter. 2, 5655 (1990).
  10. A. Onodera, I. Sakamoto, and Y. Fujii, Phys. Rev. B 56, 7935 (1997).
  11. Б. Н. Миронов, В. О. Компанец, С. А. Асеев, А. А. Ищенко, И. В. Кочиков, О. В. Мисочко, С. В. Чекалин, Е. А. Рябов, ЖЭТФ 151, 494 (2017).
  12. S. A. Aseyev, E. A. Ryabov, B. N. Mironov,I. V. Kochikov, and A. A. Ischenko, Chem. Phys. Lett. 797, 139599 (2022).
  13. D. Filippetto, P. Musumeci, R. K. Li, B. J. Siwick, M. R. Otto, M. Centurion, J. P. F. Nunes, Rev. Mod. Phys. 94, 045004 (2022).
  14. А. А. Ищенко, Г. В. Гиричев, Ю. И. Тарасов, Дифракция электронов: структура и динамика свободных молекул и конденсированного состояния вещества, Физматлит, М. (2013).
  15. V. L. Deringer, G. Cs anyi, and D. M. Proserpio, ChemPhysChem 18, 873 (2017).
  16. I. Paradisanos, E. Kymakis, C. Fotakis, G. Kioseoglou, and E. Stratakis, Appl. Phys. Lett. 105, 041108 (2014).
  17. R. Dingle, W. Wiegmann, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974).
  18. D. Zhang, Z. Zhou, H. Wang, Z. Yang, and Ch. Liu, Nanoscale, Res. Lett. 13, 400 (2018).
  19. I. G. Vallejo, G. Galle, B. Arnaud, Sh. A. Scott, M. G. Lagally, D. Boschetto, P.-E. Coulon, G. Rizza, Fl. Houdellier, D. Le Bolloc'h, and J. Faure, Phys. Rev. B 97, 054302 (2018).
  20. D. B. Durham, C. Ophus, Kh. M. Siddiqui, A. M. Minor, and D. Filippetto, Struct. Dyn. 9, 064302 (2022).
  21. П. Хирш, А. Хови, Р. Николсон, Д. Пэшли, М. Уэлан, Электронная микроскопия тонких кристаллов, пер. с англ., Мир, М. (1968).
  22. A. V. Kiselev, V. A. Mikhalevsky, A. A. Burtsev, V. V. Ionin, N. N. Eliseev, and A. A. Lotin, Optics and Laser Techn. 143, 107305 (2021).
  23. A. A. Burtsev, N. N. Eliseev, V. A. Mikhalevsky, A. V. Kiselev, V. V. Ionin, V. V. Grebenev, D. N. Karimov, and A. A. Lotin, Mater. Sci. in Semiconductor Proc. 150, 106907 (2022).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies