PatA-DUF TruA-DUF ArtA-DUF LynA-DUF MicA-DUF TenA-DUF AcyA-DUF PagA-DUF

TRGLYGWKVNGLVNAALEAVRAEGGDAGEARIRQTLDGFLNRIYYDLR
$T R G L Y G W K V N G L V N A A L E A V R A E G G D A G E A R I R Q T L D G F L N R I Y Y D L R$
$T R G L Y G W K V N S L V N A A F E T V Q A A E G E A D R D A M S R T L G S F L N R V Y Y D R R ~$
T

PatA-DUF
TruA-DUF ArtA-DUF LynA-DUF MicA-DUF TenA-DUF
AcyA-DUF
PagA-DUF

PatA-DUF
TruA-DUF
ArtA-DUF
LynA-DUF
MicA-DUF
TenA-DUF
AcyA-DUF
PagA-DUF

Fig. S1A Sequence alignment between PatA-DUF and homologues from related cyanobactin biosynthetic pathways. Residues involved in Zn^{2+} coordination (as identified in the PatG-DUF ${ }_{\text {sp }}$. structure) are highlighted with red triangles.

Fig. S1B Sequence alignment between PatAG-DUF pp . and homologues from related cyanobactin biosynthetic pathways. Residues involved in Zn^{2+} coordination (as identified in the PatG$\mathrm{DUF}_{s p}$. structure) are highlighted with red triangles.

Fig. S2 Final refined of PatG-DUF sp. Y925 model with (a) Electron density map contoured at 1.2σ from PHENIX with experimental phases calculated from anomalous scattering atoms. (b) Electron density map calculated with phases after density PHENIX modification of experimental phases.

Fig. S3 Near UV CD-spectra of PatG-DUF ${ }_{s p}$. (green) and PatG-DUF ${ }_{d i}$ (blue). A blank containing only buffer is shown in red. The CD-spectra overlay well suggestion the sequence variations (three point mutations) do not alter the tertiary structure of the domain.

Fig. S4 ITC data of PatE' titrated into PatG-DUF ${ }_{d i}$ solution. The top panel shows raw data representing the heat evolved in response to injections, the bottom panel shows the integrated heats of injections (\square) and the best fit (-) to the one-site model (origin).
(a)

(c)

(b)

(d)

Fig. S5A ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HSQC}$ of PatE' (blue) with 0.5 (green), 1.0 (purple) and 2.0 (red) equivalence of PatG-DUF ${ }_{d i}$.
(a)

(c)

(b)

(d)

Fig. S5B ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$-HSQC of heterocyclized-PatE' (blue) with 0.5 (green), 1.0 (purple) and 2.0 (red) equivalence of PatG-DUF d.

