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This document provides information about the workings of the NSS analysis referred to in the main text 
and included in the PCA_Estimator.exe program supplied in the zipped folder. It is not the user manual 

for the program, which is a separate document (PCA_Estimator_manual.pdf) also included into the 
zipped folder. Although EXAFS is referred to below, the methods described here are for XANES, including 

extended XANES data, not for kn(k)-type EXAFS data.  
 
1. Filtering problem definition 

In order to use the NSS method for evaluating the number of PCA components required to fit a XANES 
dataset, it is necessary to de-noise the data, that is to remove that which is "obviously" noise, leaving what can 
be signal. One approach to doing this filtering is to use filters applied over different regions of energy, with 
interpolation where they connect, and adjust the parameters of the filters 'by eye'. However, this procedure 
introduces a number of arbitrary parameters. 
 

The need for all these parameters comes from not using what is known about the physics of the data. We 
know, for instance, that no actual feature in the XANES can be narrower than the broadening induced by the 
instrument response and the core-hole lifetime. We also know that EXAFS features in the XANES data, even 
strong multiple-scattering peaks, tend to die off past some cutoff distance Rmax, which can be reasonably well 
estimated based on the crystallinity of the material. 
 

Suppose, before we do the filtering, we transform the energy abscissa into a new variable q such that these 
minimum-width features are all about the same width wherever they occur, from pre-edge peak to multiple-
scattering EXAFS wiggle. Then, one filter applied uniformly should de-noise the data. Ideally, the parameters 
of this filter should be valid for all data taken at a particular X-ray absorption edge. 
 
2. Mathematical maneuvers 

Let us say that we want a step of 1 unit of q to represent the width of a minimum-width feature at any 
energy E. Make the approximation of replacing differences with derivatives, so that we get 
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where Emin is the width of a sharpest-possible feature, taken as the FWHM of a XANES peak (i.e. the 

broadening , including the instrument broadening), or as the energy difference between successive zeros of an 
EXAFS wiggle at Rmax. Now, the EXAFS coordinate equation may be written as 
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where c is the conversion factor of 0.5132Å-1eV-1/2. To get a phase shift of  at a distance of Rmax implies a step 
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Therefore, we want the slope of the conversion curve of E to q to interpolate between these two limits: 
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which we can make happen in a single formula valid for E ≥ E0: 
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Three examples of this formula are shown in the following figure, in which the white and red curves 

represent non-zero and zero , respectively, to illustrate the transition between broadening-dominated and 
EXAFS-limited regions: 

 

 
Now, what should happen for E < E0? On the one hand, it could be argued that the pre-edge gets quickly 

flat as E decrease, but on the other hand, there are pre-edge features which are diagnostic in XANES analysis 
and must not be taken for noise. These two possibilities may be handled by two choices of the form of dE/dq 
for E < E0: 
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with the upper form (square root) representing the flat pre-edge case.  
 
The differential equation 5 may be solved by bringing the dq to the right hand side, and the square root to 

the left hand side and integrating: 
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with   a quantity with dimensions of energy. The inverse equation is 
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These equations hold for E ≥ E0. For E < E0, the two possibilities discussed above yield 
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for the choice that preserves pre-edge features. This is the choice used by default in the PCA_Estimator 
program. 
 
3. Implementation notes 

For filtering, we used a second-order Butterworth filter with adjustable cutoff frequency (“Fcut” 
parameter). Our program also makes available elliptic, Bessel and Chebychev filters. Since the filtering 
algorithm requires uniformly-spaced points, we resampled the data to 2048 points by cubic spline interpolation 
after transformation to q-space, filtered, then re-interpolated back onto the original grid. In order to reduce the 
possible effects of this back-and-forth resampling, we constructed the final, filtered spectrum by resampling the 
filter residuals (filtered - original) onto the original grid and added these to the original, non-resampled data. 
That way, if the filter did nothing, the resulting filtered, resampled data would be identical to the original. 
 

The filters available in our program are all causal filters, which implies a shift between the input and 
output. What we want is a filter whose impulse response is symmetric about zero lag. Thus, we reverse a copy 
of the data, run it through the same filter as the data, reverse it again, then add the two filtered versions 
together, with an abscissa offset. This abscissa offset is chosen so that the first moment of the impulse response 
of the direct and reversed filters are equal. With this procedure, features such as peaks are broadened by the 
filter but not shifted, so the difference between filtered and unfiltered resembles the second derivative of the 
signal, for high filter cutoff frequency. All of this manipulation is, of course, in the q domain 
 

How does one define what E0 should be? It is not reasonable for the user of this method to have to type in 
separate values for each spectrum, so a possible choice is to use a fixed value (user input) for all spectra. 
Another choice is to use some sort of automatic detection. In our case, we use the energy at which the 
normalized XANES first reaches a value of 0.5. This sort of automated detection takes into account the fact that 
the different spectra will often represent different oxidation states, so should get different E0. In the supplied 
program, entering a zero value for E0 enables automatic setting. 
 

The broadening  should be the quadrature sum of the core-hole broadening (assuming that a high-
resolution method like partial-fluorescence yield is not used) and the instrumental broadening. For most hard 
X-ray applications, the core-hole lifetime dominates. Approximate values may be obtained from M.O. Krause 
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and J. H. Oliver "Natural widths of atomic K and L levels, K X-ray lines and several KLL Auger lines", J. 
Phys.Chem. Ref. Data 8, 329-338 (1979) and O. Keski-Rahkonen and M. O.. Krause, "Total and partial 
Atomic-level widths", Atomic Data and Nuclear Data Tables 14, 139-146 (1974). 

 

In Figure 5 of the main text, we used = 2eV, Rmax = 5 Å, Butterworth (2nd order) cutoff frequency Fcut = 
0.7. All these parameters may be adjusted interactively in the program, thus allowing one to see the region of 
parameter space over which the results (i.e., NSS-stat) are robust. 
 
4. Signal/noise measures 

We have implemented two measures of signal/noise ratio (s/n) for spectra, both based on the 
approximation that the filtered spectrum is de-noised, so that noise is defined as the difference between filtered 
and unfiltered data. The simpler, more obvious measure is 
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where S and F are the original signal and filtered data, respectively,   is a mean over the energy range, and 

Var(x) is the variance of x sampled over the energy range. This is essentially the intuitive definition of 
signal/noise. For XANES, we usually want to consider only the post-edge region in evaluating s/n, so all sums 
and means are carried out in a user-selected energy region. 
 

The International X-ray Absorption Society's standard for reporting data 
(http://ixs.iit.edu/subcommittee_reports/sc/err-rep.pdf) implies a somewhat 
different definition: 
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These two measures turn out to yield consistent results. The program reports both. 


